Suppr超能文献

在网络二值化中考虑基于脑电图(EEG)相位的功能连接的复杂层次拓扑结构。

Accounting for the complex hierarchical topology of EEG phase-based functional connectivity in network binarisation.

作者信息

Smith Keith, Abásolo Daniel, Escudero Javier

机构信息

School of Engineering, Institute for Digital Communications, The University of Edinburgh, Edinburgh, United Kingdom.

Alzheimer Scotland Dementia Research Centre, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

PLoS One. 2017 Oct 20;12(10):e0186164. doi: 10.1371/journal.pone.0186164. eCollection 2017.

Abstract

Research into binary network analysis of brain function faces a methodological challenge in selecting an appropriate threshold to binarise edge weights. For EEG phase-based functional connectivity, we test the hypothesis that such binarisation should take into account the complex hierarchical structure found in functional connectivity. We explore the density range suitable for such structure and provide a comparison of state-of-the-art binarisation techniques, the recently proposed Cluster-Span Threshold (CST), minimum spanning trees, efficiency-cost optimisation and union of shortest path graphs, with arbitrary proportional thresholds and weighted networks. We test these techniques on weighted complex hierarchy models by contrasting model realisations with small parametric differences. We also test the robustness of these techniques to random and targeted topological attacks. We find that the CST performs consistenty well in state-of-the-art modelling of EEG network topology, robustness to topological network attacks, and in three real datasets, agreeing with our hypothesis of hierarchical complexity. This provides interesting new evidence into the relevance of considering a large number of edges in EEG functional connectivity research to provide informational density in the topology.

摘要

对大脑功能的二元网络分析的研究在选择合适的阈值来对边权重进行二值化时面临方法学挑战。对于基于脑电图(EEG)相位的功能连接性,我们检验这样一个假设:这种二值化应考虑功能连接性中发现的复杂层次结构。我们探索适合这种结构的密度范围,并对最先进的二值化技术、最近提出的聚类跨度阈值(CST)、最小生成树、效率成本优化以及最短路径图的并集与任意比例阈值和加权网络进行比较。我们通过对比具有小参数差异的模型实现,在加权复杂层次模型上测试这些技术。我们还测试这些技术对随机和有针对性的拓扑攻击的鲁棒性。我们发现,在脑电图网络拓扑的最先进建模、对拓扑网络攻击的鲁棒性以及三个真实数据集中,CST表现始终良好,这与我们关于层次复杂性的假设一致。这为在脑电图功能连接性研究中考虑大量边以提供拓扑中的信息密度的相关性提供了有趣的新证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验