Suppr超能文献

基于约翰逊噪声测温法的玻尔兹曼常数测定

A Boltzmann Constant Determination Based on Johnson Noise Thermometry.

作者信息

Flowers-Jacobs N E, Pollarolo A, Coakley K J, Fox A E, Rogalla H, Tew W L, Benz S P

机构信息

National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, CO 80305-3328, USA.

National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA.

出版信息

Metrologia. 2017 Oct;54(5):730-737. doi: 10.1088/1681-7575/aa7b3f. Epub 2017 Aug 10.

Abstract

A value for the Boltzmann constant was measured electronically using an improved version of the Johnson Noise Thermometry (JNT) system at the National Institute of Standards and Technology (NIST), USA. This system is different from prior ones, including those from the 2011 determination at NIST and both 2015 and 2017 determinations at the National Institute of Metrology (NIM), China. As in all three previous determinations, the main contribution to the combined uncertainty is the statistical uncertainty in the noise measurement, which is mitigated by accumulating and integrating many weeks of cross-correlated measured data. The second major uncertainty contribution also still results from variations in the frequency response of the ratio of the measured spectral noise of the two noise sources, the sense resistor at the triple-point of water and the superconducting quantum voltage noise source. In this paper, we briefly describe the major differences between our JNT system and previous systems, in particular the input circuit and approach we used to match the frequency responses of the two noise sources. After analyzing and integrating 49 days of accumulated data, we determined a value: = 1.380 642 9(69)×10 J/K with a relative standard uncertainty of 5.0×10 and relative offset -4.05×10 from the CODATA 2014 recommended value.

摘要

美国国家标准与技术研究院(NIST)使用改进版的约翰逊噪声温度计(JNT)系统以电子方式测量了玻尔兹曼常数的值。该系统与之前的系统不同,包括美国国家标准与技术研究院2011年的测定以及中国计量科学研究院2015年和2017年的测定。与之前的三次测定一样,合成不确定度的主要贡献来自噪声测量中的统计不确定度,通过积累和积分数周的互相关测量数据可以降低这种不确定度。第二个主要的不确定度贡献仍然来自两个噪声源(水三相点处的灵敏电阻器和超导量子电压噪声源)测量光谱噪声之比的频率响应变化。在本文中,我们简要描述了我们的JNT系统与之前系统之间的主要差异,特别是我们用于匹配两个噪声源频率响应的输入电路和方法。在分析和积分49天的累积数据后,我们确定了一个值:= 1.380 642 9(69)×10 J/K,相对标准不确定度为5.0×10,相对于CODATA 2014推荐值的相对偏差为 -4.05×10。

相似文献

1
A Boltzmann Constant Determination Based on Johnson Noise Thermometry.
Metrologia. 2017 Oct;54(5):730-737. doi: 10.1088/1681-7575/aa7b3f. Epub 2017 Aug 10.
2
The NIST Johnson Noise Thermometry System for the Determination of the Boltzmann Constant.
J Res Natl Inst Stand Technol. 2017 Dec 29;122:1-43. doi: 10.6028/jres.122.046. eCollection 2017.
3
An improved electronic determination of the Boltzmann constant by Johnson noise thermometry.
Metrologia. 2017 Aug;54(4):549-558. doi: 10.1088/1681-7575/aa781e. Epub 2017 Jul 18.
4
Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry.
Metrologia. 2017 Apr;54(2):204-217. doi: 10.1088/1681-7575/aa5d21. Epub 2017 Mar 21.
5
Progress towards the determination of thermodynamic temperature with ultra-low uncertainty.
Philos Trans A Math Phys Eng Sci. 2016 Mar 28;374(2064):20150046. doi: 10.1098/rsta.2015.0046.
6
Determination of the Boltzmann constant using a quasi-spherical acoustic resonator.
Philos Trans A Math Phys Eng Sci. 2011 Oct 28;369(1953):4014-27. doi: 10.1098/rsta.2011.0197.
7
Johnson Noise .
Meas Sci Technol. 2019;30(11). doi: 10.1088/1361-6501/ab3526.
8
A SQUID-based primary noise thermometer for low-temperature metrology.
Philos Trans A Math Phys Eng Sci. 2016 Mar 28;374(2064):20150050. doi: 10.1098/rsta.2015.0050.
9
Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: new and previous results combined.
Metrologia. 2017 Oct;54(5):748-762. doi: 10.1088/1681-7575/aa7b4a. Epub 2017 Sep 11.
10
The Boltzmann project.
Metrologia. 2018;55. doi: 10.1088/1681-7575/aaa790.

引用本文的文献

1
Johnson Noise .
Meas Sci Technol. 2019;30(11). doi: 10.1088/1361-6501/ab3526.
2
The NIST Johnson Noise Thermometry System for the Determination of the Boltzmann Constant.
J Res Natl Inst Stand Technol. 2017 Dec 29;122:1-43. doi: 10.6028/jres.122.046. eCollection 2017.
3
The Boltzmann project.
Metrologia. 2018;55. doi: 10.1088/1681-7575/aaa790.

本文引用的文献

1
CODATA Recommended Values of the Fundamental Physical Constants: 2018.
J Phys Chem Ref Data. 2021 Sep;50(3):033105. doi: 10.1063/5.0064853. Epub 2021 Sep 23.
2
The NIST Johnson Noise Thermometry System for the Determination of the Boltzmann Constant.
J Res Natl Inst Stand Technol. 2017 Dec 29;122:1-43. doi: 10.6028/jres.122.046. eCollection 2017.
3
Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry.
Metrologia. 2017 Apr;54(2):204-217. doi: 10.1088/1681-7575/aa5d21. Epub 2017 Mar 21.
4
An improved electronic determination of the Boltzmann constant by Johnson noise thermometry.
Metrologia. 2017 Aug;54(4):549-558. doi: 10.1088/1681-7575/aa781e. Epub 2017 Jul 18.
5
Determination of the Boltzmann constant using a quasi-spherical acoustic resonator.
Philos Trans A Math Phys Eng Sci. 2011 Oct 28;369(1953):4014-27. doi: 10.1098/rsta.2011.0197.
6
The measurement of thermal radiation at microwave frequencies.
Rev Sci Instrum. 1946 Jul;17:268-75. doi: 10.1063/1.1770483.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验