Suppr超能文献

[发病率区域差异的地图描绘:以石勒苏益格-荷尔斯泰因州小型癌症地图集为例的数据分析选项]

[The cartographic depiction of regional variation in morbidity : Data analysis options using the example of the small-scale cancer atlas for Schleswig-Holstein].

作者信息

Pritzkuleit Ron, Eisemann Nora, Katalinic Alexander

机构信息

Institut für Krebsepidemiologie e. V., Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.

Institut für Sozialmedizin und Epidemiologie, Universität zu Lübeck, Lübeck, Deutschland.

出版信息

Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2017 Dec;60(12):1319-1327. doi: 10.1007/s00103-017-2651-5.

Abstract

The cancer registry in Germany collects area-wide small-area data that can be presented in themes (disease mapping). Because of the occurrence of random extreme values of rates, mapping without prior spatial-statistical data analysis is problematic from a methodological and risk-communicative viewpoint - the extreme values easily mislead the card reader and obscure actual spatial patterns.The problem of data instability can generally be met by aggregation or by smoothing. The cancer atlas for Schleswig-Holstein is based on data from 1142 municipalities (median population: 721) for the diagnostic years 2001-2010. Maps for incidence (as a standardized incidence ratio), mortality (as a standardized mortality ratio), and relative survival (as a relative excess risk) were smoothed by using a Bayesian method (BYM model). The maps show that spatial differences can be made visible by smoothing.Data aggregation is the methodically simpler way, but means a loss of information. The atlas shows that small-scale mapping is possible while preserving the entire spatial information. The method of smoothing is complex, but useful for generating hypotheses. The spatial patterns found are complex, difficult to interpret, and require the collaboration of specialists from different professions, because of the diverse influencing factors (data collection, lifestyle factors, early detection, risk factors, etc.). The effort required to explain the methodology in a language easy to understand should not be underestimated.

摘要

德国的癌症登记处收集了可按主题呈现的区域范围小区域数据(疾病绘图)。由于发病率存在随机极值,从方法学和风险沟通的角度来看,未经事先空间统计数据分析的绘图存在问题——极值很容易误导读者并掩盖实际的空间模式。数据不稳定的问题通常可以通过汇总或平滑处理来解决。石勒苏益格-荷尔斯泰因州的癌症地图集基于2001年至2010年诊断年份1142个市镇(人口中位数:721)的数据。发病率(作为标准化发病率比)、死亡率(作为标准化死亡率比)和相对生存率(作为相对超额风险)的地图通过使用贝叶斯方法(BYM模型)进行了平滑处理。这些地图表明,通过平滑处理可以使空间差异显现出来。数据汇总在方法上更简单,但意味着信息损失。地图集表明,在保留全部空间信息的同时进行小规模绘图是可行的。平滑处理方法很复杂,但有助于生成假设。由于影响因素多种多样(数据收集、生活方式因素、早期检测、风险因素等),所发现的空间模式很复杂,难以解释,需要不同专业的专家协作。用通俗易懂的语言解释该方法所需的努力不应被低估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验