Suppr超能文献

流感爆发预测的对比研究。

A comparative study on predicting influenza outbreaks.

机构信息

Graduate School of Engineering, University of Tokyo.

出版信息

Biosci Trends. 2017 Nov 20;11(5):533-541. doi: 10.5582/bst.2017.01257. Epub 2017 Oct 24.

Abstract

Worldwide, influenza is estimated to result in approximately 3 to 5 million annual cases of severe illness and approximately 250,000 to 500,000 deaths. We need an accurate time-series model to predict the number of influenza patients. Although time-series models with different time lags as feature spaces could lead to varied accuracy, past studies simply adopted a time lag in their models without comparing or selecting an appropriate number of time lags. We investigated the performance of adopting 6 different time lags in 6 different models: Auto-Regressive Integrated Moving Average (ARIMA), Support Vector Regression (SVR), Random Forest (RF), Gradient Boosting (GB), Artificial Neural Network (ANN), and Long Short Term Memory (LSTM) with hyperparameter adjustment. To the best of our knowledge, this is the first time that LSTM has been used to predict influenza outbreaks. As a result, we found that the time lag of 52 weeks led to the lowest Mean Absolute Percentage Error (MAPE) in the ARIMA, ANN and LSTM, while the machine learning models (SVR, RF, GB) achieved the lowest MAPEs with a time lag of 4 weeks. We also found that the MAPEs of the machine learning models were less than ARIMA, and the MAPEs of the deep learning models (ANN, LSTM) were less than those of the machine learning models. In all the models, the LSTM model of 4 layers reached the lowest MAPE of 5.4%, and the LSTM model of 5 layers with regularization reached the lowest root mean squared error (RMSE) of 0.00210.

摘要

据估计,全球每年有 300 万至 500 万例严重疾病和 25 万至 50 万例死亡与流感有关。我们需要一个准确的时间序列模型来预测流感患者的数量。尽管具有不同时间滞后的时间序列模型作为特征空间可能会导致不同的准确性,但过去的研究只是在他们的模型中采用了一个时间滞后,而没有比较或选择适当数量的时间滞后。我们研究了在 6 个不同模型中采用 6 个不同时间滞后的性能:自回归综合移动平均 (ARIMA)、支持向量回归 (SVR)、随机森林 (RF)、梯度提升 (GB)、人工神经网络 (ANN) 和长短期记忆 (LSTM) 并进行超参数调整。据我们所知,这是首次使用 LSTM 来预测流感爆发。结果表明,在 ARIMA、ANN 和 LSTM 中,时间滞后 52 周导致平均绝对百分比误差 (MAPE) 最低,而机器学习模型 (SVR、RF、GB) 则在时间滞后 4 周时达到最低的 MAPE。我们还发现,机器学习模型的 MAPE 小于 ARIMA,深度学习模型 (ANN、LSTM) 的 MAPE 小于机器学习模型。在所有模型中,具有 4 层的 LSTM 模型达到了 5.4%的最低 MAPE,具有正则化的 5 层 LSTM 模型达到了 0.00210 的最低均方根误差 (RMSE)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验