Suppr超能文献

代谢信号通路中的遗传变异及其与生活方式因素对乳腺癌风险的交互作用:随机生存森林分析。

Genetic Variants in Metabolic Signaling Pathways and Their Interaction with Lifestyle Factors on Breast Cancer Risk: A Random Survival Forest Analysis.

机构信息

Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, Los Angeles, California.

Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.

出版信息

Cancer Prev Res (Phila). 2018 Jan;11(1):44-51. doi: 10.1158/1940-6207.CAPR-17-0143. Epub 2017 Oct 26.

Abstract

Genetic variants in the insulin-like growth factor-I (IGF-I)/insulin resistance axis may interact with lifestyle factors, influencing postmenopausal breast cancer risk, but these interrelated pathways are not fully understood. In this study, we examined 54 single-nucleotide polymorphisms (SNP) in genes related to IGF-I/insulin phenotypes and signaling pathways and lifestyle factors in relation to postmenopausal breast cancer, using data from 6,567 postmenopausal women in the Women's Health Initiative Harmonized and Imputed Genome-Wide Association Studies. We used a machine-learning method, two-stage random survival forest analysis. We identified three genetic variants ( rs2494740, rs2494744, and rs2498789) and two lifestyle factors [body mass index (BMI) and dietary alcohol intake] as the top five most influential predictors for breast cancer risk. The combination of the three SNPs, BMI, and alcohol consumption (≥1 g/day) significantly increased the risk of breast cancer in a gene and lifestyle dose-dependent manner. Our findings provide insight into gene-lifestyle interactions and will enable researchers to focus on individuals with risk genotypes to promote intervention strategies. These data also suggest potential genetic targets in future intervention/clinical trials for cancer prevention in order to reduce the risk for breast cancer in postmenopausal women. .

摘要

胰岛素样生长因子-I(IGF-I)/胰岛素抵抗轴中的遗传变异可能与生活方式因素相互作用,影响绝经后乳腺癌的风险,但这些相互关联的途径尚未完全了解。在这项研究中,我们使用来自妇女健康倡议(Women's Health Initiative)中 6567 名绝经后妇女的经过调和和推断的全基因组关联研究数据,研究了与绝经后乳腺癌相关的 IGF-I/胰岛素表型和信号通路以及生活方式因素相关的 54 个单核苷酸多态性(SNP)。我们使用机器学习方法,两阶段随机生存森林分析。我们确定了三个遗传变异(rs2494740、rs2494744 和 rs2498789)和两个生活方式因素[体重指数(BMI)和饮食酒精摄入]作为乳腺癌风险的前五个最具影响力的预测因子。三个 SNP、BMI 和酒精摄入(≥1 克/天)的组合以基因和生活方式剂量依赖的方式显著增加了乳腺癌的风险。我们的研究结果提供了对基因-生活方式相互作用的深入了解,并将使研究人员能够专注于具有风险基因型的个体,以促进干预策略。这些数据还表明,在未来的癌症预防干预/临床试验中可能存在遗传靶标,以降低绝经后妇女乳腺癌的风险。

相似文献

1
Genetic Variants in Metabolic Signaling Pathways and Their Interaction with Lifestyle Factors on Breast Cancer Risk: A Random Survival Forest Analysis.
Cancer Prev Res (Phila). 2018 Jan;11(1):44-51. doi: 10.1158/1940-6207.CAPR-17-0143. Epub 2017 Oct 26.
4
Genome-wide Association Analysis of Proinflammatory Cytokines and Gene-lifestyle Interaction for Invasive Breast Cancer Risk: The WHI dbGaP Study.
Cancer Prev Res (Phila). 2021 Jan;14(1):41-54. doi: 10.1158/1940-6207.CAPR-20-0256. Epub 2020 Sep 14.
5
Breast Cancer Risk and Insulin Resistance: Post Genome-Wide Gene-Environment Interaction Study Using a Random Survival Forest.
Cancer Res. 2019 May 15;79(10):2784-2794. doi: 10.1158/0008-5472.CAN-18-3688. Epub 2019 Apr 1.
7
Genome-Wide Meta-analysis of Gene-Environmental Interaction for Insulin Resistance Phenotypes and Breast Cancer Risk in Postmenopausal Women.
Cancer Prev Res (Phila). 2019 Jan;12(1):31-42. doi: 10.1158/1940-6207.CAPR-18-0180. Epub 2018 Oct 16.
9
Post Genome-Wide Gene-Environment Interaction Study Using Random Survival Forest: Insulin Resistance, Lifestyle Factors, and Colorectal Cancer Risk.
Cancer Prev Res (Phila). 2019 Dec;12(12):877-890. doi: 10.1158/1940-6207.CAPR-19-0278. Epub 2019 Sep 25.

引用本文的文献

1
Genetic Variation and Hot Flashes: A Systematic Review.
J Clin Endocrinol Metab. 2020 Dec 1;105(12):e4907-57. doi: 10.1210/clinem/dgaa536.
2
The Mediterranean Diet and Breast Cancer: A Personalised Approach.
Healthcare (Basel). 2019 Sep 9;7(3):104. doi: 10.3390/healthcare7030104.

本文引用的文献

1
Pretreatment Insulin Levels as a Prognostic Factor for Breast Cancer Progression.
Oncologist. 2016 Sep;21(9):1041-9. doi: 10.1634/theoncologist.2015-0462. Epub 2016 Jul 7.
3
Machine learning models in breast cancer survival prediction.
Technol Health Care. 2016;24(1):31-42. doi: 10.3233/THC-151071.
4
Insulin receptor variants and obesity-related cancers in the Framingham Heart Study.
Cancer Causes Control. 2015 Aug;26(8):1189-95. doi: 10.1007/s10552-015-0613-5. Epub 2015 Jun 16.
5
MAPK genes interact with diet and lifestyle factors to alter risk of breast cancer: the Breast Cancer Health Disparities Study.
Nutr Cancer. 2015;67(2):292-304. doi: 10.1080/01635581.2015.990568. Epub 2015 Jan 28.
6
Evaluating Random Forests for Survival Analysis using Prediction Error Curves.
J Stat Softw. 2012 Sep;50(11):1-23. doi: 10.18637/jss.v050.i11.
7
Alcohol control efforts in comprehensive cancer control plans and alcohol use among adults in the USA.
Alcohol Alcohol. 2014 Nov;49(6):661-7. doi: 10.1093/alcalc/agu064. Epub 2014 Oct 13.
8
Genetic and dietary determinants of insulin-like growth factor (IGF)-1 and IGF binding protein (BP)-3 levels among Chinese women.
PLoS One. 2014 Oct 6;9(10):e108934. doi: 10.1371/journal.pone.0108934. eCollection 2014.
9
IGF1(CA)19 and IGFBP-3-202A/C gene polymorphism and cancer risk: a meta-analysis.
Cell Biochem Biophys. 2014 May;69(1):169-78. doi: 10.1007/s12013-013-9784-4.
10
Association between insulin receptor substrate 1 Gly972Arg polymorphism and cancer risk.
Tumour Biol. 2013 Oct;34(5):2929-36. doi: 10.1007/s13277-013-0855-3. Epub 2013 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验