Suppr超能文献

片层体微管动力学——区带游戏。

Phragmoplast microtubule dynamics - a game of zones.

机构信息

Institute of Biological Chemistry, Pullman, WA 99164, USA

Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.

出版信息

J Cell Sci. 2018 Jan 29;131(2):jcs203331. doi: 10.1242/jcs.203331.

Abstract

Plant morphogenesis relies on the accurate positioning of the partition (cell plate) between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which consists of microtubules, actin filaments, membrane compartments and associated proteins. The phragmoplast forms between daughter nuclei during the transition from anaphase to telophase. As cells are commonly larger than the originally formed phragmoplast, the construction of the cell plate requires phragmoplast expansion. This expansion depends on microtubule polymerization at the phragmoplast forefront (leading zone) and loss at the back (lagging zone). Leading and lagging zones sandwich the 'transition' zone. A population of stable microtubules in the transition zone facilitates transport of building materials to the midzone where the cell plate assembly takes place. Whereas microtubules undergo dynamic instability in all zones, the overall balance appears to be shifted towards depolymerization in the lagging zone. Polymerization of microtubules behind the lagging zone has not been reported to date, suggesting that microtubule loss there is irreversible. In this Review, we discuss: (1) the regulation of microtubule dynamics in the phragmoplast zones during expansion; (2) mechanisms of the midzone establishment and initiation of cell plate biogenesis; and (3) signaling in the phragmoplast.

摘要

植物形态发生依赖于细胞分裂过程中在分裂细胞之间准确定位分隔(细胞板)。细胞板是由一个称为成膜体的专门结构合成的,它由微管、肌动蛋白丝、膜区室和相关蛋白组成。成膜体在从后期到末期的过渡期间在子核之间形成。由于细胞通常比最初形成的成膜体大,因此需要成膜体扩展来构建细胞板。这种扩展取决于成膜体前沿(领先区)的微管聚合和后端(滞后区)的微管损失。领先区和滞后区夹在“过渡区”之间。过渡区中稳定的微管群体有助于将建筑材料运送到发生细胞板组装的中间区。虽然所有区域的微管都经历动态不稳定性,但总体平衡似乎向滞后区的解聚倾斜。迄今为止,尚未报道滞后区后微管的聚合,这表明那里的微管损失是不可逆的。在这篇综述中,我们讨论了:(1)成膜体区微管动力学在扩展过程中的调节;(2)中间区建立和细胞板生物发生起始的机制;和(3)成膜体中的信号转导。

相似文献

1
Phragmoplast microtubule dynamics - a game of zones.
J Cell Sci. 2018 Jan 29;131(2):jcs203331. doi: 10.1242/jcs.203331.
3
Phragmoplast expansion: the four-stroke engine that powers plant cytokinesis.
Curr Opin Plant Biol. 2018 Dec;46:130-137. doi: 10.1016/j.pbi.2018.07.011. Epub 2018 Jul 30.
4
A Novel Katanin-Tethering Machinery Accelerates Cytokinesis.
Curr Biol. 2019 Dec 2;29(23):4060-4070.e3. doi: 10.1016/j.cub.2019.09.049. Epub 2019 Nov 14.
5
The origin of phragmoplast asymmetry.
Curr Biol. 2011 Nov 22;21(22):1924-30. doi: 10.1016/j.cub.2011.10.012. Epub 2011 Nov 10.
6
The rise and fall of the phragmoplast microtubule array.
Curr Opin Plant Biol. 2013 Dec;16(6):757-63. doi: 10.1016/j.pbi.2013.10.008. Epub 2013 Oct 27.
8
Mechanism of microtubule array expansion in the cytokinetic phragmoplast.
Nat Commun. 2013;4:1967. doi: 10.1038/ncomms2967.
9
AtMAC stabilizes the phragmoplast by crosslinking microtubules and actin filaments during cytokinesis.
J Integr Plant Biol. 2023 Aug;65(8):1950-1965. doi: 10.1111/jipb.13497. Epub 2023 Jun 14.

引用本文的文献

2
4
Comparative transcriptome analysis of emerging young and mature leaves of a single-cell C4 plant.
PeerJ. 2025 Apr 29;13:e19282. doi: 10.7717/peerj.19282. eCollection 2025.
5
The ER-PM interaction is essential for cytokinesis and recruits the actin cytoskeleton through the SCAR/WAVE complex.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2416927122. doi: 10.1073/pnas.2416927122. Epub 2025 Feb 6.
7
Localized calcium transients in phragmoplast regulate cytokinesis of tobacco BY-2 cells.
Plant Cell Rep. 2024 Mar 15;43(4):97. doi: 10.1007/s00299-024-03181-3.
8
Heat stress during male meiosis impairs cytoskeletal organization, spindle assembly and tapetum degeneration in wheat.
Front Plant Sci. 2024 Jan 8;14:1314021. doi: 10.3389/fpls.2023.1314021. eCollection 2023.
9
The interplay between cell wall integrity and cell cycle progression in plants.
Plant Mol Biol. 2023 Dec;113(6):367-382. doi: 10.1007/s11103-023-01394-w. Epub 2023 Dec 13.

本文引用的文献

1
Katanin Effects on Dynamics of Cortical Microtubules and Mitotic Arrays in Revealed by Advanced Live-Cell Imaging.
Front Plant Sci. 2017 May 24;8:866. doi: 10.3389/fpls.2017.00866. eCollection 2017.
2
Shortening of Microtubule Overlap Regions Defines Membrane Delivery Sites during Plant Cytokinesis.
Curr Biol. 2017 Feb 20;27(4):514-520. doi: 10.1016/j.cub.2016.12.043. Epub 2017 Jan 26.
3
Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression.
Plant Physiol. 2017 Jan;173(1):582-599. doi: 10.1104/pp.16.01602. Epub 2016 Nov 22.
4
A Distinct Pathway for Polar Exocytosis in Plant Cell Wall Formation.
Plant Physiol. 2016 Oct;172(2):1003-1018. doi: 10.1104/pp.16.00754. Epub 2016 Aug 16.
5
The Evolution of Cell Division: From Streptophyte Algae to Land Plants.
Trends Plant Sci. 2016 Oct;21(10):872-883. doi: 10.1016/j.tplants.2016.07.004. Epub 2016 Jul 28.
6
Cell cycle-regulated PLEIADE/AtMAP65-3 links membrane and microtubule dynamics during plant cytokinesis.
Plant J. 2016 Nov;88(4):531-541. doi: 10.1111/tpj.13275. Epub 2016 Oct 5.
7
Arabidopsis CSLD5 Functions in Cell Plate Formation in a Cell Cycle-Dependent Manner.
Plant Cell. 2016 Jul;28(7):1722-37. doi: 10.1105/tpc.16.00203. Epub 2016 Jun 27.
9
Separase Promotes Microtubule Polymerization by Activating CENP-E-Related Kinesin Kin7.
Dev Cell. 2016 May 23;37(4):350-361. doi: 10.1016/j.devcel.2016.04.015.
10
Plant cytokinesis-No ring, no constriction but centrifugal construction of the partitioning membrane.
Semin Cell Dev Biol. 2016 May;53:10-8. doi: 10.1016/j.semcdb.2015.10.037. Epub 2015 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验