Chung Moo K, Vilalta-Gil Victoria, Lee Hyekyoung, Rathouz Paul J, Lahey Benjamin B, Zald David H
University of Wisconsin-Madison.
Vanderbilt University.
Inf Process Med Imaging. 2017 Jun;2017:299-310. doi: 10.1007/978-3-319-59050-9_24. Epub 2017 May 23.
We present a novel framework for characterizing paired brain networks using techniques in hyper-networks, sparse learning and persistent homology. The framework is general enough for dealing with any type of paired images such as twins, multimodal and longitudinal images. The exact nonparametric statistical inference procedure is derived on testing monotonic graph theory features that do not rely on time consuming permutation tests. The proposed method computes the exact probability in quadratic time while the permutation tests require exponential time. As illustrations, we apply the method to simulated networks and a twin fMRI study. In case of the latter, we determine the statistical significance of the heritability index of the large-scale reward network where every voxel is a network node.
我们提出了一个新颖的框架,用于使用超网络、稀疏学习和持久同调技术来表征配对脑网络。该框架具有足够的通用性,可处理任何类型的配对图像,如双胞胎、多模态和纵向图像。在测试不依赖耗时排列检验的单调图论特征时,推导出了精确的非参数统计推断程序。所提出的方法在二次时间内计算精确概率,而排列检验需要指数时间。作为示例,我们将该方法应用于模拟网络和一项双胞胎功能磁共振成像研究。在后一种情况下,我们确定大规模奖励网络遗传力指数的统计显著性,其中每个体素都是一个网络节点。