Suppr超能文献

配对脑网络的精确拓扑推理:持久同调

Exact Topological Inference for Paired Brain Networks Persistent Homology.

作者信息

Chung Moo K, Vilalta-Gil Victoria, Lee Hyekyoung, Rathouz Paul J, Lahey Benjamin B, Zald David H

机构信息

University of Wisconsin-Madison.

Vanderbilt University.

出版信息

Inf Process Med Imaging. 2017 Jun;2017:299-310. doi: 10.1007/978-3-319-59050-9_24. Epub 2017 May 23.

Abstract

We present a novel framework for characterizing paired brain networks using techniques in hyper-networks, sparse learning and persistent homology. The framework is general enough for dealing with any type of paired images such as twins, multimodal and longitudinal images. The exact nonparametric statistical inference procedure is derived on testing monotonic graph theory features that do not rely on time consuming permutation tests. The proposed method computes the exact probability in quadratic time while the permutation tests require exponential time. As illustrations, we apply the method to simulated networks and a twin fMRI study. In case of the latter, we determine the statistical significance of the heritability index of the large-scale reward network where every voxel is a network node.

摘要

我们提出了一个新颖的框架,用于使用超网络、稀疏学习和持久同调技术来表征配对脑网络。该框架具有足够的通用性,可处理任何类型的配对图像,如双胞胎、多模态和纵向图像。在测试不依赖耗时排列检验的单调图论特征时,推导出了精确的非参数统计推断程序。所提出的方法在二次时间内计算精确概率,而排列检验需要指数时间。作为示例,我们将该方法应用于模拟网络和一项双胞胎功能磁共振成像研究。在后一种情况下,我们确定大规模奖励网络遗传力指数的统计显著性,其中每个体素都是一个网络节点。

相似文献

1
Exact Topological Inference for Paired Brain Networks Persistent Homology.配对脑网络的精确拓扑推理:持久同调
Inf Process Med Imaging. 2017 Jun;2017:299-310. doi: 10.1007/978-3-319-59050-9_24. Epub 2017 May 23.

引用本文的文献

3
TOPOLOGICAL LEARNING FOR BRAIN NETWORKS.脑网络的拓扑学习
Ann Appl Stat. 2023 Mar;17(1):403-433. doi: 10.1214/22-aoas1633. Epub 2023 Jan 24.
4
Lattice Paths for Persistent Diagrams.持久图的格路径。
Interpret Mach Intell Med Image Comput Topogr Data Anal Appl Med Data (2021). 2021;12929:77-86. doi: 10.1007/978-3-030-87444-5_8. Epub 2021 Sep 21.
5
Rapid Acceleration of the Permutation Test via Transpositions.通过对换实现排列检验的快速加速
Connect Neuroimaging (2019). 2019 Oct;11848:42-53. doi: 10.1007/978-3-030-32391-2_5. Epub 2019 Oct 10.
8
STATISTICAL INFERENCE ON THE NUMBER OF CYCLES IN BRAIN NETWORKS.脑网络中循环次数的统计推断
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:113-116. doi: 10.1109/ISBI.2019.8759222. Epub 2019 Jul 11.
9
Exact topological inference of the resting-state brain networks in twins.双胞胎静息态脑网络的精确拓扑推断
Netw Neurosci. 2019 Jul 1;3(3):674-694. doi: 10.1162/netn_a_00091. eCollection 2019.
10
Editorial: Topological Neuroscience.社论:拓扑神经科学
Netw Neurosci. 2019 Jul 1;3(3):653-655. doi: 10.1162/netn_e_00096. eCollection 2019.

本文引用的文献

2
Cooperation driven coherence: Brains working hard together.合作驱动的连贯性:大脑协同高效运转。
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4696-9. doi: 10.1109/EMBC.2015.7319442.
4
Brain connectivity hyper-network for MCI classification.用于轻度认知障碍分类的脑连接超网络
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):724-32. doi: 10.1007/978-3-319-10470-6_90.
7
Genetic influences on brain structure.基因对脑结构的影响。
Nat Neurosci. 2001 Dec;4(12):1253-8. doi: 10.1038/nn758.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验