Suppr超能文献

剪接因子 hnRNPA1 调节 MYLK 基因的可变剪接。

The Splicing Factor hnRNPA1 Regulates Alternate Splicing of the MYLK Gene.

机构信息

1 Department of Medicine, College of Medicine, and.

2 Arizona Research Laboratories, University of Arizona, Tucson, Arizona.

出版信息

Am J Respir Cell Mol Biol. 2018 May;58(5):604-613. doi: 10.1165/rcmb.2017-0141OC.

Abstract

Profound lung vascular permeability is a cardinal feature of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI), two syndromes known to centrally involve the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier dysregulation. Two main splice variants, nmMLCK1 and nmMLCK2, are well represented in human lung endothelial cells and encoded by MYLK, and they differ only in the presence of exon 11 in nmMLCK1, which contains critical phosphorylation sites (Y and Y) that influence nmMLCK enzymatic activity, cellular translocation, and localization in response to vascular agonists. We recently demonstrated the functional role of SNPs in altering MYLK splicing, and in the present study we sought to identify the role of splicing factors in the generation of nmMLCK1 and nmMLCK2 spliced variants. Using bioinformatic in silico approaches, we identified a putative binding site for heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), a recognized splicing factor. We verified hnRNPA1 binding to MYLK by gel shift analyses and that hnRNPA1 gene and protein expression is upregulated in mouse lungs obtained from preclinical models of ARDS and VILI and in human endothelial cells exposed to 18% cyclic stretch, a model that reproduces the excessive mechanical stress observed in VILI. Using an MYLK minigene approach, we established a direct role of hnRNPA1 in MYLK splicing and in the context of 18% cyclic stretch. In summary, these data indicate an important regulatory role for hnRNPA1 in MYLK splicing, and they increase understanding of MYLK splicing in the regulation of lung vascular integrity during acute lung inflammation and excessive mechanical stress, such as that observed in ARDS and VILI.

摘要

肺血管通透性的深度降低是急性呼吸窘迫综合征(ARDS)和呼吸机诱导性肺损伤(VILI)的主要特征,这两种综合征已知主要涉及血管屏障调节中非肌肉肌球蛋白轻链激酶(nmMLCK)的非肌肉同工型。两种主要的剪接变体,nmMLCK1 和 nmMLCK2,在人肺内皮细胞中表达良好,由 MYLK 编码,它们仅在 nmMLCK1 中存在外显子 11 方面存在差异,该外显子包含影响 nmMLCK 酶活性、细胞易位和血管激动剂反应定位的关键磷酸化位点(Y 和 Y)。我们最近证明了 SNP 在改变 MYLK 剪接中的功能作用,在本研究中,我们试图确定剪接因子在产生 nmMLCK1 和 nmMLCK2 剪接变体中的作用。我们使用生物信息学的计算方法,鉴定了一个与不均一核核糖核蛋白 A1(hnRNPA1)结合的假定结合位点,hnRNPA1 是一种公认的剪接因子。我们通过凝胶迁移分析验证了 hnRNPA1 与 MYLK 的结合,并且在 ARDS 和 VILI 的临床前模型以及暴露于 18%循环拉伸的人内皮细胞中,hnRNPA1 基因和蛋白表达上调,18%循环拉伸是一种复制 VILI 中观察到的过度机械应激的模型。使用 MYLK 小基因方法,我们确定了 hnRNPA1 在 MYLK 剪接中的直接作用,以及在 18%循环拉伸的情况下。总之,这些数据表明 hnRNPA1 在 MYLK 剪接中具有重要的调节作用,并增加了对急性肺炎症和过度机械应激期间肺血管完整性调节中 MYLK 剪接的理解,如在 ARDS 和 VILI 中观察到的那样。

相似文献

引用本文的文献

1
RNA splicing: Novel star in pulmonary diseases with a treatment perspective.RNA剪接:从治疗角度看肺部疾病中的新星。
Acta Pharm Sin B. 2025 May;15(5):2301-2322. doi: 10.1016/j.apsb.2025.03.023. Epub 2025 Mar 13.
9

本文引用的文献

3
Acute Lung Injury: A Clinical and Molecular Review.急性肺损伤:临床与分子综述
Arch Pathol Lab Med. 2016 Apr;140(4):345-50. doi: 10.5858/arpa.2015-0519-RA.
9
hnRNP A1: the Swiss army knife of gene expression.hnRNP A1:基因表达的瑞士军刀。
Int J Mol Sci. 2013 Sep 16;14(9):18999-9024. doi: 10.3390/ijms140918999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验