Suppr超能文献

一种带有辅助信息的矩阵填充稀疏交互模型。

A Sparse Interactive Model for Matrix Completion with Side Information.

作者信息

Lu Jin, Liang Guannan, Sun Jiangwen, Bi Jinbo

机构信息

University of Connecticut, Storrs, CT 06269.

出版信息

Adv Neural Inf Process Syst. 2016;29:4071-4079.

Abstract

Matrix completion methods can benefit from side information besides the partially observed matrix. The use of side features that describe the row and column entities of a matrix has been shown to reduce the sample complexity for completing the matrix. We propose a novel sparse formulation that explicitly models the interaction between the row and column side features to approximate the matrix entries. Unlike early methods, this model does not require the low rank condition on the model parameter matrix. We prove that when the side features span the latent feature space of the matrix to be recovered, the number of observed entries needed for an exact recovery is (log ) where is the size of the matrix. If the side features are corrupted latent features of the matrix with a small perturbation, our method can achieve an -recovery with (log ) sample complexity. If side information is useless, our method maintains a () sampling rate similar to classic methods. An efficient linearized Lagrangian algorithm is developed with a convergence guarantee. Empirical results show that our approach outperforms three state-of-the-art methods both in simulations and on real world datasets.

摘要

矩阵补全方法除了可以利用部分观测矩阵之外,还能从辅助信息中受益。已证明,使用描述矩阵行和列实体的辅助特征可以降低补全矩阵所需的样本复杂度。我们提出了一种新颖的稀疏公式,该公式明确地对行和列辅助特征之间的相互作用进行建模,以近似矩阵元素。与早期方法不同,该模型不要求模型参数矩阵满足低秩条件。我们证明,当辅助特征跨越要恢复的矩阵的潜在特征空间时,精确恢复所需的观测元素数量为 (log ),其中 是矩阵的大小。如果辅助特征是带有小扰动的矩阵的损坏潜在特征,我们的方法可以通过 (log ) 的样本复杂度实现 -恢复。如果辅助信息无用,我们的方法保持与经典方法类似的 () 采样率。我们开发了一种具有收敛保证的高效线性化拉格朗日算法。实证结果表明,我们的方法在模拟和真实世界数据集上均优于三种最新方法。

相似文献

1
2
Simultaneous tensor decomposition and completion using factor priors.
IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):577-91. doi: 10.1109/TPAMI.2013.164.
3
An efficient matrix bi-factorization alternative optimization method for low-rank matrix recovery and completion.
Neural Netw. 2013 Dec;48:8-18. doi: 10.1016/j.neunet.2013.06.013. Epub 2013 Jul 8.
4
Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination.
IEEE Trans Pattern Anal Mach Intell. 2015 Sep;37(9):1751-63. doi: 10.1109/TPAMI.2015.2392756.
5
Fast and accurate matrix completion via truncated nuclear norm regularization.
IEEE Trans Pattern Anal Mach Intell. 2013 Sep;35(9):2117-30. doi: 10.1109/TPAMI.2012.271.
6
Robust Matrix Completion With Column Outliers.
IEEE Trans Cybern. 2022 Nov;52(11):12042-12055. doi: 10.1109/TCYB.2021.3072896. Epub 2022 Oct 17.
7
Sketch Kernel Ridge Regression Using Circulant Matrix: Algorithm and Theory.
IEEE Trans Neural Netw Learn Syst. 2020 Sep;31(9):3512-3524. doi: 10.1109/TNNLS.2019.2944959. Epub 2019 Oct 29.
8
Matrix Completion With Cross-Concentrated Sampling: Bridging Uniform Sampling and CUR Sampling.
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):10100-10113. doi: 10.1109/TPAMI.2023.3261185. Epub 2023 Jun 30.
9
Tensor LRR and Sparse Coding-Based Subspace Clustering.
IEEE Trans Neural Netw Learn Syst. 2016 Oct;27(10):2120-33. doi: 10.1109/TNNLS.2016.2553155. Epub 2016 Apr 27.
10
Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.
PLoS One. 2015 Nov 16;10(11):e0142403. doi: 10.1371/journal.pone.0142403. eCollection 2015.

引用本文的文献

1
MASMDDI: multi-layer adaptive soft-mask graph neural network for drug-drug interaction prediction.
Front Pharmacol. 2024 May 20;15:1369403. doi: 10.3389/fphar.2024.1369403. eCollection 2024.
2
Fermionic Reduced Density Low-Rank Matrix Completion, Noise Filtering, and Measurement Reduction in Quantum Simulations.
J Chem Theory Comput. 2023 Dec 26;19(24):9151-9160. doi: 10.1021/acs.jctc.3c00851. Epub 2023 Dec 14.
3
Attribute-Aware Recommender System Based on Collaborative Filtering: Survey and Classification.
Front Big Data. 2020 Jan 15;2:49. doi: 10.3389/fdata.2019.00049. eCollection 2019.
4
Inferring phenotypes from substance use via collaborative matrix completion.
BMC Syst Biol. 2018 Nov 22;12(Suppl 6):104. doi: 10.1186/s12918-018-0623-5.
5
Collaborative Phenotype Inference from Comorbid Substance Use Disorders and Genotypes.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2017 Nov;2017:392-397. doi: 10.1109/BIBM.2017.8217681. Epub 2017 Dec 18.

本文引用的文献

1
Generalized Alternating Direction Method of Multipliers: New Theoretical Insights and Applications.
Math Program Comput. 2015 Jun;7(2):149-187. doi: 10.1007/s12532-015-0078-2. Epub 2015 Feb 6.
2
Inductive matrix completion for predicting gene-disease associations.
Bioinformatics. 2014 Jun 15;30(12):i60-68. doi: 10.1093/bioinformatics/btu269.
3
Modeling precision treatment of breast cancer.
Genome Biol. 2013;14(10):R110. doi: 10.1186/gb-2013-14-10-r110.
4
Recovering the missing components in a large noisy low-rank matrix: application to SFM.
IEEE Trans Pattern Anal Mach Intell. 2004 Aug;26(8):1051-63. doi: 10.1109/TPAMI.2004.52.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验