Suppr超能文献

聚苹果酸三色氨酸共聚物与脂质膜相互作用导致膜溶解。

Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane Solubilization.

作者信息

Ding Hui, Fox Irving, Patil Rameshwar, Galstyan Anna, Black Keith L, Ljubimova Julia Y, Holler Eggehard

机构信息

Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.

Institut für Biophysik und Physikalische Biochemie der Universität Regensburg, Regensburg, Germany.

出版信息

J Nanomater. 2017;2017. doi: 10.1155/2017/4238697. Epub 2017 May 21.

Abstract

Anionic polymers with membrane permeation functionalities are highly desirable for secure cytoplasmic drug delivery. We have developed tritryptophan containing copolymer (P/WWW) of polymalic acid (PMLA) that permeates membranes by a mechanism different from previously described PMLA copolymers of trileucine (P/LLL) and leucine ethyl ester (P/LOEt) that use the "barrel stave" and "carpet" mechanism, respectively. The novel mechanism leads to solubilization of membranes by forming copolymer "belts" around planar membrane "packages." The formation of such packages is supported by results obtained from studies including size-exclusion chromatography, confocal microscopy, and fluorescence energy transfer. According to this "belt" mechanism, it is hypothesized that P/WWW first attaches to the membrane surface. Subsequently the hydrophobic tryptophan side chains translocate into the periphery and insert into the lipid bilayer thereby cutting the membrane into packages. The reaction is driven by the high affinity between the tryptophan residues and lipid side chains resulting in a stable configuration. The formation of the membrane packages requires physical agitation suggesting that the success of the translocation depends on the fluidity of the membrane. It is emphasized that the "belt" mechanism could specifically function in the recognition of abnormal cells with high membrane fluidity and in response to hyperthermia.

摘要

具有膜渗透功能的阴离子聚合物对于安全的细胞质药物递送非常理想。我们已经开发了一种含三个色氨酸的聚苹果酸共聚物(P/WWW),其通过一种不同于先前描述的聚苹果酸共聚物(分别使用“桶板”和“地毯”机制的三亮氨酸共聚物(P/LLL)和亮氨酸乙酯共聚物(P/LOEt))的机制渗透细胞膜。这种新机制通过在平面膜“包裹体”周围形成共聚物“带”导致膜的溶解。包括尺寸排阻色谱、共聚焦显微镜和荧光能量转移在内的研究结果支持了这种包裹体的形成。根据这种“带”机制,推测P/WWW首先附着在膜表面。随后,疏水的色氨酸侧链转移到膜周边并插入脂质双层,从而将膜切割成包裹体。该反应由色氨酸残基与脂质侧链之间的高亲和力驱动,从而形成稳定的结构。膜包裹体的形成需要物理搅拌,这表明转移的成功取决于膜的流动性。需要强调的是,“带”机制可能在识别具有高膜流动性的异常细胞以及对热疗的反应中发挥特定作用。

相似文献

2
Distinct mechanisms of membrane permeation induced by two polymalic acid copolymers.
Biomaterials. 2013 Jan;34(1):217-25. doi: 10.1016/j.biomaterials.2012.08.016. Epub 2012 Oct 9.
3
The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery.
Biomaterials. 2011 Aug;32(22):5269-78. doi: 10.1016/j.biomaterials.2011.03.073. Epub 2011 Apr 22.
4
Glyco-acrylate copolymers for bilayer tethering on benzophenone-modified substrates.
Colloids Surf B Biointerfaces. 2007 Feb 15;54(2):127-35. doi: 10.1016/j.colsurfb.2006.08.010. Epub 2006 Aug 22.
5
A Combination of Tri-Leucine and Angiopep-2 Drives a Polyanionic Polymalic Acid Nanodrug Platform Across the Blood-Brain Barrier.
ACS Nano. 2019 Feb 26;13(2):1253-1271. doi: 10.1021/acsnano.8b06437. Epub 2019 Jan 16.
6
Molecular model for the solubilization of membranes into nanodisks by styrene maleic Acid copolymers.
Biophys J. 2015 Jan 20;108(2):279-90. doi: 10.1016/j.bpj.2014.11.3464.
7
Polymer-induced flip-flop in biomembranes.
Acc Chem Res. 2006 Oct;39(10):702-10. doi: 10.1021/ar050078q.
9
Bilayer membrane permeability of ionic liquid-filled block copolymer vesicles in aqueous solution.
J Phys Chem B. 2012 Jul 19;116(28):8282-9. doi: 10.1021/jp3033098. Epub 2012 Jul 5.
10
Solubilization of artificial mitochondrial membranes by amphiphilic copolymers of different charge.
Biochim Biophys Acta Biomembr. 2021 Dec 1;1863(12):183725. doi: 10.1016/j.bbamem.2021.183725. Epub 2021 Aug 10.

引用本文的文献

1
Polymalic acid for translational nanomedicine.
J Nanobiotechnology. 2022 Jun 21;20(1):295. doi: 10.1186/s12951-022-01497-4.
2
Biosynthetic Polymalic Acid as a Delivery Nanoplatform for Translational Cancer Medicine.
Trends Biochem Sci. 2021 Mar;46(3):213-224. doi: 10.1016/j.tibs.2020.09.008. Epub 2020 Oct 22.
3
Polymer nanomedicines.
Adv Drug Deliv Rev. 2020;156:40-64. doi: 10.1016/j.addr.2020.07.020. Epub 2020 Jul 28.
4
Covalent nano delivery systems for selective imaging and treatment of brain tumors.
Adv Drug Deliv Rev. 2017 Apr;113:177-200. doi: 10.1016/j.addr.2017.06.002. Epub 2017 Jun 10.

本文引用的文献

1
Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins.
Nano Res. 2015 Mar;8(3):774-789. doi: 10.1007/s12274-014-0560-6. Epub 2014 Oct 23.
2
Membrane Translocation and Organelle-Selective Delivery Steered by Polymeric Zwitterionic Nanospheres.
Biomacromolecules. 2016 Apr 11;17(4):1523-35. doi: 10.1021/acs.biomac.6b00172. Epub 2016 Mar 17.
3
Archetypal tryptophan-rich antimicrobial peptides: properties and applications.
World J Microbiol Biotechnol. 2016 Feb;32(2):31. doi: 10.1007/s11274-015-1986-z. Epub 2016 Jan 9.
4
MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: nanoclinic in the brain.
ACS Nano. 2015 May 26;9(5):5594-608. doi: 10.1021/acsnano.5b01872. Epub 2015 May 6.
5
The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
Biochim Biophys Acta. 2015 Feb;1848(2):593-602. doi: 10.1016/j.bbamem.2014.11.013. Epub 2014 Nov 20.
6
Amphiphilic macromolecules on cell membranes: from protective layers to controlled permeabilization.
J Membr Biol. 2014 Oct;247(9-10):861-81. doi: 10.1007/s00232-014-9679-3. Epub 2014 Jun 6.
7
Cell-penetrating peptides: design, synthesis, and applications.
ACS Nano. 2014 Mar 25;8(3):1972-94. doi: 10.1021/nn4057269. Epub 2014 Feb 28.
8
Molecules that mimic apolipoprotein A-I: potential agents for treating atherosclerosis.
J Med Chem. 2014 Mar 27;57(6):2169-96. doi: 10.1021/jm4005847. Epub 2013 Oct 29.
9
Toxicity and efficacy evaluation of multiple targeted polymalic acid conjugates for triple-negative breast cancer treatment.
J Drug Target. 2013 Dec;21(10):956-967. doi: 10.3109/1061186X.2013.837470. Epub 2013 Sep 16.
10
Mimicry of high-density lipoprotein: functional peptide-lipid nanoparticles based on multivalent peptide constructs.
J Am Chem Soc. 2013 Sep 11;135(36):13414-24. doi: 10.1021/ja404714a. Epub 2013 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验