Suppr超能文献

澳大利亚禾本科黑麦草族植物DNA条形码中距离法和基于树的方法的有效性测试

Testing efficacy of distance and tree-based methods for DNA barcoding of grasses (Poaceae tribe Poeae) in Australia.

作者信息

Birch Joanne L, Walsh Neville G, Cantrill David J, Holmes Gareth D, Murphy Daniel J

机构信息

Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia.

出版信息

PLoS One. 2017 Oct 30;12(10):e0186259. doi: 10.1371/journal.pone.0186259. eCollection 2017.

Abstract

In Australia, Poaceae tribe Poeae are represented by 19 genera and 99 species, including economically and environmentally important native and introduced pasture grasses [e.g. Poa (Tussock-grasses) and Lolium (Ryegrasses)]. We used this tribe, which are well characterised in regards to morphological diversity and evolutionary relationships, to test the efficacy of DNA barcoding methods. A reference library was generated that included 93.9% of species in Australia (408 individuals, [Formula: see text] = 3.7 individuals per species). Molecular data were generated for official plant barcoding markers (rbcL, matK) and the nuclear ribosomal internal transcribed spacer (ITS) region. We investigated accuracy of specimen identifications using distance- (nearest neighbour, best-close match, and threshold identification) and tree-based (maximum likelihood, Bayesian inference) methods and applied species discovery methods (automatic barcode gap discovery, Poisson tree processes) based on molecular data to assess congruence with recognised species. Across all methods, success rate for specimen identification of genera was high (87.5-99.5%) and of species was low (25.6-44.6%). Distance- and tree-based methods were equally ineffective in providing accurate identifications for specimens to species rank (26.1-44.6% and 25.6-31.3%, respectively). The ITS marker achieved the highest success rate for specimen identification at both generic and species ranks across the majority of methods. For distance-based analyses the best-close match method provided the greatest accuracy for identification of individuals with a high percentage of "correct" (97.6%) and a low percentage of "incorrect" (0.3%) generic identifications, based on the ITS marker. For tribe Poeae, and likely for other grass lineages, sequence data in the standard DNA barcode markers are not variable enough for accurate identification of specimens to species rank. For recently diverged grass species similar challenges are encountered in the application of genetic and morphological data to species delimitations, with taxonomic signal limited by extensive infra-specific variation and shared polymorphisms among species in both data types.

摘要

在澳大利亚,禾本科黑麦草族由19个属和99个物种组成,包括具有经济和环境重要性的本地和引进的牧草[如早熟禾属(丛生禾本科)和黑麦草属(黑麦草)]。我们利用这个在形态多样性和进化关系方面特征明确的族来测试DNA条形码方法的有效性。构建了一个参考文库,其中包括澳大利亚93.9%的物种(408个个体,每个物种平均3.7个个体)。生成了官方植物条形码标记(rbcL、matK)和核糖体核糖核酸内转录间隔区(ITS)区域的分子数据。我们使用距离法(最近邻法、最佳匹配法和阈值识别法)和基于树的方法(最大似然法、贝叶斯推断法)研究了标本鉴定的准确性,并基于分子数据应用物种发现方法(自动条形码间隙发现法、泊松树过程法)来评估与公认物种的一致性。在所有方法中,属的标本鉴定成功率较高(87.5 - 99.5%),而种的鉴定成功率较低(25.6 - 44.6%)。距离法和基于树的方法在将标本准确鉴定到种的水平上同样无效(分别为26.1 - 44.6%和25.6 - 31.3%)。在大多数方法中,ITS标记在属和种水平的标本鉴定中成功率最高。对于基于距离的分析,基于ITS标记,最佳匹配法在鉴定个体时提供了最高的准确性,“正确”的百分比很高(97.6%),“错误”的百分比很低(0.3%)。对于黑麦草族,可能对于其他禾本科谱系,标准DNA条形码标记中的序列数据变异性不足以将标本准确鉴定到种的水平。对于最近分化的禾本科物种,在将遗传和形态数据应用于物种划分时也遇到了类似的挑战,分类信号受到种内广泛变异和两种数据类型中物种间共享多态性的限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffbf/5662090/75e5a6cf72ac/pone.0186259.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验