Suppr超能文献

甲状腺癌的高分辨率蛋白质组学和代谢组学:解析新型生物标志物。

High-resolution proteomics and metabolomics in thyroid cancer: Deciphering novel biomarkers.

机构信息

a Department of Surgery , Hospital de la Vega Lorenzo Guirao, University of Murcia , Murcia , Spain.

b Department of Surgery , Hospital Universitario Virgen de la Arrixaca, University of Murcia , Murcia , Spain.

出版信息

Crit Rev Clin Lab Sci. 2017 Nov-Dec;54(7-8):446-457. doi: 10.1080/10408363.2017.1394266. Epub 2017 Oct 30.

Abstract

The incidence of thyroid cancer (TC) - the most common endocrine malignancy - has been increasing sharply since the mid-1990s. The rate of TC incidence in both men and women has been faster than any other cancer. Both improved diagnoses (i.e. increased medical surveillance and more sensitive diagnostic tests, such as ultrasound and confirmation via fine-needle aspiration biopsy (FNAB)), and environmental factors detrimental to thyroid health are thought to account for the increased incidence. There are several histological types of thyroid carcinoma including papillary, follicular, medullary, and anaplastic. Determining the type of TC is crucial for prognosis and treatment selection. Unfortunately, approximately 20-30% of patients undergoing FNAB have inconclusive or indeterminate results, leading to unnecessary surgical intervention in 80% of patients with benign nodules. To resolve this diagnostic dilemma, new biomarkers of TC are needed. Proteomic approaches offer an unbiased platform for the comprehensive analysis of the whole proteome. Although mRNA expression is widely considered to be indicative of protein expression, protein levels are the result of protein synthesis and degradation, yet RNA levels are only indicative of protein synthesis. Clinically, there is growing evidence for the role of proteomic and metabolomic technologies in TC biomarker discovery, providing novel information on the molecular events associated with TC, and potentially leading to the identification of novel drug targets. This review thoroughly discusses the importance of novel proteomic and metabolomic approaches to identify new biomarkers for TC.

摘要

自 20 世纪 90 年代中期以来,甲状腺癌(TC)——最常见的内分泌恶性肿瘤——的发病率一直在急剧上升。男性和女性的 TC 发病率增长速度均超过其他任何癌症。人们认为,这一发病率的上升是由于诊断水平的提高(即增加了医疗监测以及更敏感的诊断测试,如超声检查和细针穿刺抽吸活检(FNAB)的确认)和对甲状腺健康有害的环境因素所致。甲状腺癌有几种组织学类型,包括乳头状、滤泡状、髓样和间变性。确定 TC 的类型对于预后和治疗选择至关重要。不幸的是,大约 20-30%接受 FNAB 的患者结果不确定或不明确,导致 80%的良性结节患者进行了不必要的手术干预。为了解决这一诊断难题,需要寻找新的 TC 生物标志物。蛋白质组学方法为全面分析整个蛋白质组提供了一个无偏倚的平台。尽管 mRNA 表达被广泛认为是蛋白质表达的指示物,但蛋白质水平是蛋白质合成和降解的结果,而 RNA 水平仅指示蛋白质合成。临床上,越来越多的证据表明蛋白质组学和代谢组学技术在 TC 生物标志物发现中的作用,为与 TC 相关的分子事件提供了新的信息,并可能导致新的药物靶点的确定。这篇综述深入探讨了新型蛋白质组学和代谢组学方法在识别 TC 新生物标志物方面的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验