Suppr超能文献

额眼区失活会减弱上丘的活动,但延迟的扫视积累控制反应时间的增加。

Frontal Eye Field Inactivation Diminishes Superior Colliculus Activity, But Delayed Saccadic Accumulation Governs Reaction Time Increases.

作者信息

Peel Tyler R, Dash Suryadeep, Lomber Stephen G, Corneil Brian D

机构信息

The Brain and Mind Institute.

Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5B7, Canada, and.

出版信息

J Neurosci. 2017 Nov 29;37(48):11715-11730. doi: 10.1523/JNEUROSCI.2664-17.2017. Epub 2017 Oct 31.

Abstract

Stochastic accumulator models provide a comprehensive framework for how neural activity could produce behavior. Neural activity within the frontal eye fields (FEFs) and intermediate layers of the superior colliculus (iSC) support such models for saccade initiation by relating variations in saccade reaction time (SRT) to variations in such parameters as baseline, rate of accumulation of activity, and threshold. Here, by recording iSC activity during reversible cryogenic inactivation of the FEF in four male nonhuman primates, we causally tested which parameter(s) best explains concomitant increases in SRT. While FEF inactivation decreased all aspects of ipsilesional iSC activity, decreases in accumulation rate and threshold poorly predicted accompanying increases in SRT. Instead, SRT increases best correlated with delays in the onset of saccade-related accumulation. We conclude that FEF signals govern the onset of saccade-related accumulation within the iSC, and that the onset of accumulation is a relevant parameter for stochastic accumulation models of saccade initiation. The superior colliculus (SC) and frontal eye fields (FEFs) are two of the best-studied areas in the primate brain. Surprisingly, little is known about what happens in the SC when the FEF is temporarily inactivated. Here, we show that temporary FEF inactivation decreases all aspects of functionally related activity in the SC. This combination of techniques also enabled us to relate changes in SC activity to concomitant increases in saccadic reaction time (SRT). Although stochastic accumulator models relate SRT increases to reduced rates of accumulation or increases in threshold, such changes were not observed in the SC. Instead, FEF inactivation delayed the onset of saccade-related accumulation, emphasizing the importance of this parameter in biologically plausible models of saccade initiation.

摘要

随机累加器模型为神经活动如何产生行为提供了一个全面的框架。额叶眼区(FEF)和上丘中间层(iSC)内的神经活动通过将扫视反应时间(SRT)的变化与诸如基线、活动积累速率和阈值等参数的变化联系起来,支持此类扫视启动模型。在这里,通过记录四只雄性非人灵长类动物在FEF可逆性低温失活期间的iSC活动,我们因果性地测试了哪个参数最能解释SRT的伴随增加。虽然FEF失活降低了同侧iSC活动的所有方面,但积累速率和阈值的降低并不能很好地预测SRT随之而来的增加。相反,SRT的增加与扫视相关积累开始的延迟最相关。我们得出结论,FEF信号控制iSC内扫视相关积累的开始,并且积累的开始是扫视启动随机积累模型的一个相关参数。上丘(SC)和额叶眼区(FEF)是灵长类大脑中研究最多的两个区域。令人惊讶的是,当FEF暂时失活时,SC中会发生什么却知之甚少。在这里,我们表明FEF的暂时失活会降低SC中功能相关活动的所有方面。这种技术组合还使我们能够将SC活动的变化与扫视反应时间(SRT)的伴随增加联系起来。尽管随机累加器模型将SRT的增加与积累速率降低或阈值增加联系起来,但在SC中并未观察到此类变化。相反,FEF失活延迟了扫视相关积累的开始,强调了该参数在生物学上合理的扫视启动模型中的重要性。

相似文献

1
Frontal Eye Field Inactivation Diminishes Superior Colliculus Activity, But Delayed Saccadic Accumulation Governs Reaction Time Increases.
J Neurosci. 2017 Nov 29;37(48):11715-11730. doi: 10.1523/JNEUROSCI.2664-17.2017. Epub 2017 Oct 31.
3
Frontal eye field inactivation alters the readout of superior colliculus activity for saccade generation in a task-dependent manner.
J Comput Neurosci. 2021 Aug;49(3):229-249. doi: 10.1007/s10827-020-00760-7. Epub 2020 Nov 8.
5
6
Interaction of the frontal eye field and superior colliculus for saccade generation.
J Neurophysiol. 2001 Feb;85(2):804-15. doi: 10.1152/jn.2001.85.2.804.
7
Causal Role of Neural Signals Transmitted From the Frontal Eye Field to the Superior Colliculus in Saccade Generation.
Front Neural Circuits. 2018 Aug 28;12:69. doi: 10.3389/fncir.2018.00069. eCollection 2018.
8
Impairment but not abolishment of express saccades after unilateral or bilateral inactivation of the frontal eye fields.
J Neurophysiol. 2020 May 1;123(5):1907-1919. doi: 10.1152/jn.00191.2019. Epub 2020 Apr 8.
9
Frontal eye field neurons orthodromically activated from the superior colliculus.
J Neurophysiol. 1998 Dec;80(6):3331-5. doi: 10.1152/jn.1998.80.6.3331.

引用本文的文献

1
Focal control of non-invasive deep brain stimulation using multipolar temporal interference.
Bioelectron Med. 2025 Mar 27;11(1):7. doi: 10.1186/s42234-025-00169-6.
2
Disrupted microsaccade responses in late-life depression.
Sci Rep. 2025 Jan 22;15(1):2827. doi: 10.1038/s41598-025-86399-9.
3
Dissociating the Contributions of Frontal Eye Field Activity to Spatial Working Memory and Motor Preparation.
J Neurosci. 2023 Dec 13;43(50):8681-8689. doi: 10.1523/JNEUROSCI.1071-23.2023.
6
Neural Substrates of the Drift-Diffusion Model in Brain Disorders.
Front Comput Neurosci. 2022 Jan 7;15:678232. doi: 10.3389/fncom.2021.678232. eCollection 2021.
7
Adaptive control of movement deceleration during saccades.
PLoS Comput Biol. 2021 Jul 6;17(7):e1009176. doi: 10.1371/journal.pcbi.1009176. eCollection 2021 Jul.
8
Proof of Concept of Novel Visuo-Spatial-Motor Fall Prevention Training for Old People.
Geriatrics (Basel). 2021 Jun 29;6(3):66. doi: 10.3390/geriatrics6030066.

本文引用的文献

1
Visuomotor Functions in the Frontal Lobe.
Annu Rev Vis Sci. 2015 Nov 24;1:469-498. doi: 10.1146/annurev-vision-082114-035317. Epub 2015 Jul 22.
2
A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment.
PLoS Biol. 2016 Aug 10;14(8):e1002531. doi: 10.1371/journal.pbio.1002531. eCollection 2016 Aug.
3
Sharper, Stronger, Faster Upper Visual Field Representation in Primate Superior Colliculus.
Curr Biol. 2016 Jul 11;26(13):1647-1658. doi: 10.1016/j.cub.2016.04.059. Epub 2016 Jun 9.
4
The importance of decision onset.
J Neurophysiol. 2016 Feb 1;115(2):643-61. doi: 10.1152/jn.00274.2015. Epub 2015 Nov 25.
6
Application of radiosurgical techniques to produce a primate model of brain lesions.
Front Syst Neurosci. 2015 Apr 24;9:67. doi: 10.3389/fnsys.2015.00067. eCollection 2015.
7
Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.
J Neurosci. 2015 Jan 21;35(3):1106-24. doi: 10.1523/JNEUROSCI.2579-14.2015.
8
Bilateral saccadic deficits following large and reversible inactivation of unilateral frontal eye field.
J Neurophysiol. 2014 Jan;111(2):415-33. doi: 10.1152/jn.00398.2013. Epub 2013 Oct 23.
9
Neural chronometry and coherency across speed-accuracy demands reveal lack of homomorphism between computational and neural mechanisms of evidence accumulation.
Philos Trans R Soc Lond B Biol Sci. 2013 Sep 9;368(1628):20130071. doi: 10.1098/rstb.2013.0071. Print 2013 Oct 19.
10
Threshold mechanism for saccade initiation in frontal eye field and superior colliculus.
J Neurophysiol. 2013 Jun;109(11):2767-80. doi: 10.1152/jn.00611.2012. Epub 2013 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验