Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany; DZHK (German Research Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.
Cardiovascular Genomics Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Atherosclerosis. 2017 Dec;267:39-48. doi: 10.1016/j.atherosclerosis.2017.10.019. Epub 2017 Oct 21.
Mitochondrial damage and augmented production of reactive oxygen species (ROS) may represent an intermediate step by which hypercholesterolemia exacerbates atherosclerotic lesion formation.
To test this hypothesis, in mice with severe but genetically reversible hypercholesterolemia (i.e. the so called Reversa mouse model), we performed time-resolved analyses of mitochondrial transcriptome in the aortic arch employing a systems-level network approach.
During hypercholesterolemia, we observed a massive down-regulation (>28%) of mitochondrial genes, specifically at the time of rapid atherosclerotic lesion expansion and foam cell formation, i.e. between 30 and 40 weeks of age. Both phenomena - down-regulation of mitochondrial genes and lesion expansion - were largely reversible by genetically lowering plasma cholesterol (by >80%, from 427 to 54 ± 31 mg/L) at 30 weeks. Co-expression network analysis revealed that both mitochondrial signature genes were highly connected in two modules, negatively correlating with lesion size and supported as causal for coronary artery disease (CAD) in humans, as expression-associated single nucleotide polymorphisms (eSNPs) representing their genes overlapped markedly with established disease risk loci. Within these modules, we identified the transcription factor estrogen related receptor (ERR)-α and its co-factors PGC1-α and -β, i.e. two members of the peroxisome proliferator-activated receptor γ co-activator 1 family of transcription regulators, as key regulatory genes. Together, these factors are known as major orchestrators of mitochondrial biogenesis and antioxidant responses.
Using a network approach, we demonstrate how hypercholesterolemia could hamper mitochondrial activity during atherosclerosis progression and pinpoint potential therapeutic targets to counteract these processes.
线粒体损伤和活性氧(ROS)的产生增加可能是高胆固醇血症加剧动脉粥样硬化病变形成的中间步骤。
为了验证这一假设,我们在具有严重但可遗传逆转的高胆固醇血症(即所谓的 Reversa 小鼠模型)的小鼠中,采用系统网络方法对主动脉弓的线粒体转录组进行了时程分析。
在高胆固醇血症期间,我们观察到大量的线粒体基因下调(>28%),特别是在快速动脉粥样硬化病变扩张和泡沫细胞形成时,即 30 至 40 周龄时。两种现象——线粒体基因下调和病变扩张——在 30 周时通过基因降低血浆胆固醇(从 427 降至 54±31mg/L,>80%)得到了很大程度的逆转。共表达网络分析显示,两个模块中的线粒体特征基因高度连接,与病变大小呈负相关,并在人类中被支持为冠心病(CAD)的因果基因,因为代表其基因的表达相关单核苷酸多态性(eSNP)与已确立的疾病风险位点明显重叠。在这些模块中,我们鉴定出转录因子雌激素相关受体(ERR)-α及其共因子 PGC1-α和-β,即过氧化物酶体增殖物激活受体 γ共激活因子 1 家族转录调节剂的两个成员,作为关键调节基因。这些因素通常被称为线粒体生物发生和抗氧化反应的主要协调因子。
我们使用网络方法证明了高胆固醇血症如何在动脉粥样硬化进展过程中阻碍线粒体活性,并确定了潜在的治疗靶点以对抗这些过程。