Suppr超能文献

纳米尺寸膜系链的过剩面积依赖性标度行为。

Excess area dependent scaling behavior of nano-sized membrane tethers.

作者信息

Ramakrishnan N, Sreeja K K, Roychoudhury Arpita, Eckmann David M, Ayyaswamy Portonovo S, Baumgart Tobias, Pucadyil Thomas, Patil Shivprasad, Weaver Valerie M, Radhakrishnan Ravi

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States of America.

出版信息

Phys Biol. 2018 Jan 11;15(2):026002. doi: 10.1088/1478-3975/aa9905.

Abstract

Thermal fluctuations in cell membranes manifest as an excess area ([Formula: see text]) which governs a multitude of physical process at the sub-micron scale. We present a theoretical framework, based on an in silico tether pulling method, which may be used to reliably estimate [Formula: see text] in live cells. We perform our simulations in two different thermodynamic ensembles: (i) the constant projected area and (ii) the constant frame tension ensembles and show the equivalence of our results in the two. The tether forces estimated from our simulations compare well with our experimental measurements for tethers extracted from ruptured GUVs and HeLa cells. We demonstrate the significance and validity of our method by showing that all our calculations performed in the initial tether formation regime (i.e. when the length of the tether is comparable to its radius) along with experiments of tether extraction in 15 different cell types collapse onto two unified scaling relationships mapping tether force, tether radius, bending stiffness κ, and membrane tension σ. We show that [Formula: see text] is an important determinant of the radius of the extracted tether, which is equal to the characteristic length [Formula: see text] for [Formula: see text], and is equal to [Formula: see text] for [Formula: see text]. We also find that the estimated excess area follows a linear scaling behavior that only depends on the true value of [Formula: see text] for the membrane, based on which we propose a self-consistent technique to estimate the range of excess membrane areas in a cell.

摘要

细胞膜中的热涨落表现为过剩面积([公式:见原文]),它在亚微米尺度上支配着众多物理过程。我们基于一种计算机模拟的系链拉伸方法提出了一个理论框架,该框架可用于可靠地估计活细胞中的[公式:见原文]。我们在两种不同的热力学系综中进行模拟:(i)恒定投影面积系综和(ii)恒定框架张力系综,并证明了我们在这两种系综中的结果是等效的。我们从模拟中估计的系链力与从破裂的巨型单层囊泡(GUVs)和HeLa细胞中提取的系链的实验测量值相当吻合。我们通过表明我们在初始系链形成阶段(即当系链长度与其半径相当时)进行的所有计算以及在15种不同细胞类型中提取系链的实验都符合两个统一的标度关系,从而证明了我们方法的重要性和有效性,这两个标度关系将系链力、系链半径、弯曲刚度κ和膜张力σ联系起来。我们表明,[公式:见原文]是提取的系链半径的一个重要决定因素,对于[公式:见原文],它等于特征长度[公式:见原文],对于[公式:见原文],它等于[公式:见原文]。我们还发现,估计的过剩面积遵循一种线性标度行为,该行为仅取决于膜的[公式:见原文]的真实值,基于此我们提出了一种自洽技术来估计细胞中过剩膜面积的范围。

相似文献

1
Excess area dependent scaling behavior of nano-sized membrane tethers.
Phys Biol. 2018 Jan 11;15(2):026002. doi: 10.1088/1478-3975/aa9905.
3
Influence of thermally driven surface undulations on tethers formed from bilayer membranes.
Biophys J. 2006 Jul 15;91(2):619-25. doi: 10.1529/biophysj.105.068270. Epub 2006 Apr 28.
4
5
Deformation and flow of membrane into tethers extracted from neuronal growth cones.
Biophys J. 1996 Jan;70(1):358-69. doi: 10.1016/S0006-3495(96)79577-2.
6
Hydration thermodynamics beyond the linear response approximation.
J Phys Condens Matter. 2016 Oct 19;28(41):414014. doi: 10.1088/0953-8984/28/41/414014. Epub 2016 Aug 22.
7
Scaling regimes for wormlike chains confined to cylindrical surfaces under tension.
Eur Phys J E Soft Matter. 2024 Jan 22;47(1):6. doi: 10.1140/epje/s10189-023-00384-6.
8
Correction factors to convert microdosimetry measurements in silicon to tissue in C ion therapy.
Phys Med Biol. 2017 Mar 21;62(6):2055-2069. doi: 10.1088/1361-6560/aa5de5. Epub 2017 Feb 2.
9
Mechanical equilibrium of thick, hollow, liquid membrane cylinders.
Biophys J. 1987 Sep;52(3):391-400. doi: 10.1016/S0006-3495(87)83227-7.
10
Cell protrusions and tethers: a unified approach.
Biophys J. 2011 Apr 6;100(7):1697-707. doi: 10.1016/j.bpj.2011.02.038.

引用本文的文献

1
Free energy calculations for membrane morphological transformations and insights to physical biology and oncology.
Methods Enzymol. 2024;701:359-386. doi: 10.1016/bs.mie.2024.03.028. Epub 2024 Apr 14.
2
Asymmetric crowders and membrane morphology at the nexus of intracellular trafficking and oncology.
Mechanobiol Med. 2024 Sep;2(3). doi: 10.1016/j.mbm.2024.100071. Epub 2024 May 3.
3
Modeling membrane reshaping driven by dynamic protein assemblies.
Curr Opin Struct Biol. 2023 Feb;78:102505. doi: 10.1016/j.sbi.2022.102505. Epub 2022 Dec 16.
5
Data driven and biophysical insights into the regulation of trafficking vesicles by extracellular matrix stiffness.
iScience. 2022 Jul 4;25(8):104721. doi: 10.1016/j.isci.2022.104721. eCollection 2022 Aug 19.
6
Crowding-induced membrane remodeling: Interplay of membrane tension, polymer density, architecture.
Biophys J. 2022 Oct 4;121(19):3674-3683. doi: 10.1016/j.bpj.2022.05.031. Epub 2022 May 26.
7
Probing lipid membrane bending mechanics using gold nanorod tracking.
Phys Rev Res. 2022 Mar-May;4(1). doi: 10.1103/physrevresearch.4.l012027. Epub 2022 Mar 7.
8
Membrane signalosome: where biophysics meets systems biology.
Curr Opin Syst Biol. 2021 Mar;25:34-41. doi: 10.1016/j.coisb.2021.02.001. Epub 2021 Feb 25.
9
Influence of membrane-cortex linkers on the extrusion of membrane tubes.
Biophys J. 2021 Feb 16;120(4):598-606. doi: 10.1016/j.bpj.2020.12.028. Epub 2021 Jan 16.
10
Multiscale modeling of protein membrane interactions for nanoparticle targeting in drug delivery.
Curr Opin Struct Biol. 2020 Oct;64:104-110. doi: 10.1016/j.sbi.2020.06.023. Epub 2020 Jul 27.

本文引用的文献

3
Membrane tension and cytoskeleton organization in cell motility.
J Phys Condens Matter. 2015 Jul 15;27(27):273103. doi: 10.1088/0953-8984/27/27/273103. Epub 2015 Jun 10.
4
Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.
Integr Biol (Camb). 2015 Oct;7(10):1120-34. doi: 10.1039/c5ib00040h. Epub 2015 May 11.
5
Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):022717. doi: 10.1103/PhysRevE.90.022717. Epub 2014 Aug 25.
6
The cancer glycocalyx mechanically primes integrin-mediated growth and survival.
Nature. 2014 Jul 17;511(7509):319-25. doi: 10.1038/nature13535. Epub 2014 Jun 25.
7
Effects of membrane trafficking on signaling by receptor tyrosine kinases.
Cold Spring Harb Perspect Biol. 2013 Nov 1;5(11):a009035. doi: 10.1101/cshperspect.a009035.
8
Molecular mechanisms of cellular mechanosensing.
Nat Mater. 2013 Nov;12(11):1064-71. doi: 10.1038/nmat3772. Epub 2013 Oct 20.
9
Exo70 generates membrane curvature for morphogenesis and cell migration.
Dev Cell. 2013 Aug 12;26(3):266-78. doi: 10.1016/j.devcel.2013.07.007.
10
Membrane elastic properties and cell function.
PLoS One. 2013 Jul 3;8(7):e67708. doi: 10.1371/journal.pone.0067708. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验