Suppr超能文献

用于自治信息物理系统中可靠决策过程的分布式组合框架。

A Decentralized Compositional Framework for Dependable Decision Process in Self-Managed Cyber Physical Systems.

作者信息

Zhou Peng, Zuo Decheng, Hou Kun-Mean, Zhang Zhan

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

LIMOS, UMR 6158 CNRS, Université Clermont Auvergne, BP 10125, 63173 Aubière CEDEX, France.

出版信息

Sensors (Basel). 2017 Nov 9;17(11):2580. doi: 10.3390/s17112580.

Abstract

Cyber Physical Systems (CPSs) need to interact with the changeable environment under various interferences. To provide continuous and high quality services, a self-managed CPS should automatically reconstruct itself to adapt to these changes and recover from failures. Such dynamic adaptation behavior introduces systemic challenges for CPS design, advice evaluation and decision process arrangement. In this paper, a formal compositional framework is proposed to systematically improve the dependability of the decision process. To guarantee the consistent observation of event orders for causal reasoning, this work first proposes a relative time-based method to improve the composability and compositionality of the timing property of events. Based on the relative time solution, a formal reference framework is introduced for self-managed CPSs, which includes a compositional FSM-based actor model (subsystems of CPS), actor-based advice and runtime decomposable decisions. To simplify self-management, a self-similar recursive actor interface is proposed for decision (actor) composition. We provide constraints and seven patterns for the composition of reliability and process time requirements. Further, two decentralized decision process strategies are proposed based on our framework, and we compare the reliability with the static strategy and the centralized processing strategy. The simulation results show that the one-order feedback strategy has high reliability, scalability and stability against the complexity of decision and random failure. This paper also shows a way to simplify the evaluation for dynamic system by improving the composability and compositionality of the subsystem.

摘要

网络物理系统(CPS)需要在各种干扰下与多变的环境进行交互。为了提供持续且高质量的服务,一个自我管理的CPS应该能够自动进行自我重构,以适应这些变化并从故障中恢复。这种动态适应行为给CPS的设计、建议评估和决策过程安排带来了系统性挑战。本文提出了一个形式化的组合框架,以系统地提高决策过程的可靠性。为了确保在因果推理中对事件顺序的一致观察,这项工作首先提出了一种基于相对时间的方法,以提高事件定时属性的可组合性和组合性。基于相对时间解决方案,为自我管理的CPS引入了一个形式化的参考框架,其中包括基于组合有限状态机的参与者模型(CPS的子系统)、基于参与者的建议和运行时可分解决策。为了简化自我管理,提出了一种自相似递归参与者接口用于决策(参与者)组合。我们为可靠性和处理时间要求的组合提供了约束和七种模式。此外,基于我们的框架提出了两种分散式决策过程策略,并将其可靠性与静态策略和集中式处理策略进行了比较。仿真结果表明,一阶反馈策略在面对决策复杂性和随机故障时具有较高的可靠性、可扩展性和稳定性。本文还展示了一种通过提高子系统的可组合性和组合性来简化动态系统评估的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3159/5713012/fbf8ac63faff/sensors-17-02580-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验