Suppr超能文献

定量和系统药理学 2. 通过基于网络的方法研究 G 蛋白偶联受体配体的多药理学。

Quantitative and systems pharmacology 2. In silico polypharmacology of G protein-coupled receptor ligands via network-based approaches.

机构信息

Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.

出版信息

Pharmacol Res. 2018 Mar;129:400-413. doi: 10.1016/j.phrs.2017.11.005. Epub 2017 Nov 10.

Abstract

G protein-coupled receptors (GPCRs) are the largest super family with more than 800 membrane receptors. Currently, over 30% of the approved drugs target human GPCRs. However, only approximately 30 human GPCRs have been resolved three-dimensional crystal structures, which limits traditional structure-based drug discovery. Recent advances in network-based systems pharmacology approaches have demonstrated powerful strategies for identifying new targets of GPCR ligands. In this study, we proposed a network-based systems pharmacology framework for comprehensive identification of new drug-target interactions on GPCRs. Specifically, we reconstructed both global and local drug-target interaction networks for human GPCRs. Network analysis on the known drug-target networks showed rational strategies for designing new GPCR ligands and evaluating side effects of the approved GPCR drugs. We further built global and local network-based models for predicting new targets of the known GPCR ligands. The area under the receiver operating characteristic curve of more than 0.96 was obtained for the best network-based models in cross validation. In case studies, we identified that several network-predicted GPCR off-targets (e.g. ADRA2A, ADRA2C and CHRM2) were associated with cardiovascular complications (e.g. bradycardia and palpitations) of the approved GPCR drugs via an integrative analysis of drug-target and off-target-adverse drug event networks. Importantly, we experimentally validated that two newly predicted compounds, AM966 and Ki16425, showed high binding affinities on prostaglandin E2 receptor EP4 subtype with IC=2.67μM and 6.34μM, respectively. In summary, this study offers powerful network-based tools for identifying polypharmacology of GPCR ligands in drug discovery and development.

摘要

G 蛋白偶联受体(GPCRs)是最大的超家族,拥有超过 800 种膜受体。目前,超过 30%的已批准药物针对人类 GPCR。然而,只有大约 30 种人类 GPCR 的三维晶体结构得到解决,这限制了基于结构的传统药物发现。最近基于网络的系统药理学方法的进展已经证明了识别 GPCR 配体新靶标的强大策略。在这项研究中,我们提出了一种基于网络的系统药理学框架,用于全面识别 GPCR 上的新药物-靶标相互作用。具体来说,我们重建了人类 GPCR 的全局和局部药物-靶标相互作用网络。对已知药物-靶标网络的网络分析表明了设计新的 GPCR 配体和评估已批准的 GPCR 药物副作用的合理策略。我们进一步构建了用于预测已知 GPCR 配体新靶标的全局和局部基于网络的模型。在交叉验证中,最佳基于网络的模型的接收者操作特征曲线下面积超过 0.96。在案例研究中,我们通过整合药物-靶标和非靶标-不良药物事件网络分析,确定了几种网络预测的 GPCR 脱靶(例如 ADRA2A、ADRA2C 和 CHRM2)与已批准的 GPCR 药物的心血管并发症(例如心动过缓和心悸)有关。重要的是,我们通过实验验证了两种新预测的化合物 AM966 和 Ki16425 在前列腺素 E2 受体 EP4 亚型上具有高结合亲和力,IC=2.67μM 和 6.34μM。总之,这项研究为药物发现和开发中鉴定 GPCR 配体的多效性提供了强大的基于网络的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验