Suppr超能文献

相位性抑制作为产生快速呼吸节律的机制。

Phasic inhibition as a mechanism for generation of rapid respiratory rhythms.

机构信息

Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106.

Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106.

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12815-12820. doi: 10.1073/pnas.1711536114. Epub 2017 Nov 13.

Abstract

Central neural networks operate continuously throughout life to control respiration, yet mechanisms regulating ventilatory frequency are poorly understood. Inspiration is generated by the pre-Bötzinger complex of the ventrolateral medulla, where it is thought that excitation increases inspiratory frequency and inhibition causes apnea. To test this model, we used an in vitro optogenetic approach to stimulate select populations of hindbrain neurons and characterize how they modulate frequency. Unexpectedly, we found that inhibition was required for increases in frequency caused by stimulation of Phox2b-lineage, putative CO-chemosensitive neurons. As a mechanistic explanation for inhibition-dependent increases in frequency, we found that phasic stimulation of inhibitory neurons can increase inspiratory frequency via postinhibitory rebound. We present evidence that Phox2b-mediated increases in frequency are caused by rebound excitation following an inhibitory synaptic volley relayed by expiration. Thus, although it is widely thought that inhibition between inspiration and expiration simply prevents activity in the antagonistic phase, we instead propose a model whereby inhibitory coupling via postinhibitory rebound excitation actually generates fast modes of inspiration.

摘要

中枢神经网络在生命过程中持续运作以控制呼吸,但调节通气频率的机制仍知之甚少。吸气由延髓腹外侧区的 Pre-Bötzinger 复合体产生,据认为,兴奋会增加吸气频率,而抑制会导致呼吸暂停。为了验证该模型,我们使用体外光遗传学方法刺激后脑神经元的选定群体,并研究它们如何调节频率。出乎意料的是,我们发现刺激 Phox2b 谱系(假定的 CO 敏感神经元)引起的频率增加需要抑制。作为抑制依赖性频率增加的机制解释,我们发现抑制性神经元的阶段性刺激可以通过后抑制反弹增加吸气频率。我们提供的证据表明,Phox2b 介导的频率增加是由呼气中继的抑制性突触冲动后引起的反弹兴奋引起的。因此,尽管人们普遍认为吸气和呼气之间的抑制只是防止拮抗相中的活动,但我们提出了一个模型,即通过后抑制反弹兴奋的抑制性耦合实际上产生了快速吸气模式。

相似文献

1
Phasic inhibition as a mechanism for generation of rapid respiratory rhythms.相位性抑制作为产生快速呼吸节律的机制。
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12815-12820. doi: 10.1073/pnas.1711536114. Epub 2017 Nov 13.

引用本文的文献

5
Perspectives on the basis of seizure-induced respiratory dysfunction.关于癫痫发作导致呼吸功能障碍的观点。
Front Neural Circuits. 2022 Dec 20;16:1033756. doi: 10.3389/fncir.2022.1033756. eCollection 2022.
7
Breathing Rhythm and Pattern and Their Influence on Emotion.呼吸节奏与模式及其对情绪的影响。
Annu Rev Neurosci. 2022 Jul 8;45:223-247. doi: 10.1146/annurev-neuro-090121-014424. Epub 2022 Mar 8.

本文引用的文献

4
Brainstem-mediated sniffing and respiratory modulation during odor stimulation.气味刺激过程中脑干介导的嗅吸和呼吸调节。
Respir Physiol Neurobiol. 2016 Nov;233:17-24. doi: 10.1016/j.resp.2016.07.008. Epub 2016 Jul 26.
5
A novel excitatory network for the control of breathing.一种用于控制呼吸的新型兴奋性神经网络。
Nature. 2016 Aug 4;536(7614):76-80. doi: 10.1038/nature18944. Epub 2016 Jul 27.
9
Neural Control of Breathing and CO2 Homeostasis.呼吸与二氧化碳稳态的神经控制
Neuron. 2015 Sep 2;87(5):946-61. doi: 10.1016/j.neuron.2015.08.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验