Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain.
Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain.
Cell Mol Life Sci. 2018 May;75(9):1687-1706. doi: 10.1007/s00018-017-2709-4. Epub 2017 Nov 13.
Dni1 and Dni2 facilitate cell fusion during mating. Here, we show that these proteins are interdependent for their localization in a plasma membrane subdomain, which we have termed the mating fusion domain. Dni1 compartmentation in the domain is required for cell fusion. The contribution of actin, sterol-dependent membrane organization, and Dni2 to this compartmentation was analysed, and the results showed that Dni2 plays the most relevant role in the process. In turn, the Dni2 exit from the endoplasmic reticulum depends on Dni1. These proteins share the presence of a cysteine motif in their first extracellular loop related to the claudin GLWxxC(8-10 aa)C signature motif. Structure-function analyses show that mutating each Dni1 conserved cysteine has mild effects, and that only simultaneous elimination of several cysteines leads to a mating defect. On the contrary, eliminating each single cysteine and the C-terminal tail in Dni2 abrogates Dni1 compartmentation and cell fusion. Sequence alignments show that claudin trans-membrane helixes bear small-XXX-small motifs at conserved positions. The fourth Dni2 trans-membrane helix tends to form homo-oligomers in Escherichia plasma membrane, and two concatenated small-XXX-small motifs are required for efficient oligomerization and for Dni2 export from the yeast endoplasmic reticulum. Together, our results strongly suggest that Dni2 is an ancient claudin that blocks Dni1 diffusion from the intercellular region where two plasma membranes are in close proximity, and that this function is required for Dni1 to facilitate cell fusion.
Dni1 和 Dni2 有助于交配时的细胞融合。在这里,我们表明这些蛋白质在质膜亚域中的定位是相互依赖的,我们将其称为交配融合域。Dni1 在该域中的分隔对于细胞融合是必需的。分析了肌动蛋白、固醇依赖性膜组织和 Dni2 对这种分隔的贡献,结果表明 Dni2 在该过程中起着最重要的作用。反过来,Dni2 从内质网的逸出取决于 Dni1。这些蛋白质在其第一个细胞外环中共享一个与紧密连接 GLWxxC(8-10 aa)C 特征基序相关的半胱氨酸基序。结构功能分析表明,突变每个 Dni1 保守半胱氨酸的影响较小,只有同时消除几个半胱氨酸才会导致交配缺陷。相反,消除 Dni2 中的每个单个半胱氨酸和 C 末端尾巴会破坏 Dni1 的分隔和细胞融合。序列比对表明紧密连接跨膜螺旋在保守位置具有小-XXX-小基序。第四个 Dni2 跨膜螺旋在大肠杆菌质膜中倾向于形成同源寡聚体,并且两个串联的小-XXX-小基序是高效寡聚化所必需的,并且是 Dni2 从酵母内质网输出所必需的。总之,我们的结果强烈表明 Dni2 是一种古老的紧密连接蛋白,它阻止 Dni1 从两个质膜紧密接近的细胞间隙扩散,并且该功能对于 Dni1 促进细胞融合是必需的。