Suppr超能文献

计算和统计弥散磁共振成像的进展。

Advances in computational and statistical diffusion MRI.

机构信息

Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Computer Science department, University of Verona, Verona, Italy.

出版信息

NMR Biomed. 2019 Apr;32(4):e3805. doi: 10.1002/nbm.3805. Epub 2017 Nov 14.

Abstract

Computational methods are crucial for the analysis of diffusion magnetic resonance imaging (MRI) of the brain. Computational diffusion MRI can provide rich information at many size scales, including local microstructure measures such as diffusion anisotropies or apparent axon diameters, whole-brain connectivity information that describes the brain's wiring diagram and population-based studies in health and disease. Many of the diffusion MRI analyses performed today were not possible five, ten or twenty years ago, due to the requirements for large amounts of computer memory or processor time. In addition, mathematical frameworks had to be developed or adapted from other fields to create new ways to analyze diffusion MRI data. The purpose of this review is to highlight recent computational and statistical advances in diffusion MRI and to put these advances into context by comparison with the more traditional computational methods that are in popular clinical and scientific use. We aim to provide a high-level overview of interest to diffusion MRI researchers, with a more in-depth treatment to illustrate selected computational advances.

摘要

计算方法对于大脑弥散磁共振成像(dMRI)的分析至关重要。计算弥散磁共振成像可以在多个尺度上提供丰富的信息,包括局部微观结构测量,如扩散各向异性或表观轴突直径,全脑连接信息,描述大脑的布线图,以及健康和疾病人群的研究。今天进行的许多弥散磁共振成像分析在五年、十年或二十年前是不可能的,这是因为需要大量的计算机内存或处理器时间。此外,还必须从其他领域开发或改编数学框架,以创造新的方法来分析弥散磁共振成像数据。本文的目的是强调弥散磁共振成像领域最近的计算和统计进展,并通过与更传统的计算方法进行比较,将这些进展置于背景中,这些方法在临床和科学上得到了广泛应用。我们旨在为弥散磁共振成像研究人员提供一个高层次的概述,并深入探讨一些选定的计算进展。

相似文献

1
Advances in computational and statistical diffusion MRI.计算和统计弥散磁共振成像的进展。
NMR Biomed. 2019 Apr;32(4):e3805. doi: 10.1002/nbm.3805. Epub 2017 Nov 14.
2
AxTract: Toward microstructure informed tractography.AxTract:走向基于微观结构信息的束追踪。
Hum Brain Mapp. 2017 Nov;38(11):5485-5500. doi: 10.1002/hbm.23741. Epub 2017 Aug 2.
5
A simple estimate of axon size with diffusion MRI.用弥散磁共振成像估计轴突大小。
Neuroimage. 2021 Feb 15;227:117619. doi: 10.1016/j.neuroimage.2020.117619. Epub 2020 Dec 8.

引用本文的文献

9
Diffusion Imaging in the Post HCP Era.后 HCP 时代的扩散成像。
J Magn Reson Imaging. 2021 Jul;54(1):36-57. doi: 10.1002/jmri.27247. Epub 2020 Jun 20.
10
Brain networks and their relevance for stroke rehabilitation.脑网络及其与中风康复的相关性。
Clin Neurophysiol. 2019 Jul;130(7):1098-1124. doi: 10.1016/j.clinph.2019.04.004. Epub 2019 Apr 15.

本文引用的文献

8
Diffusion MRI fiber tractography of the brain.脑弥散磁共振成像纤维束追踪技术。
NMR Biomed. 2019 Apr;32(4):e3785. doi: 10.1002/nbm.3785. Epub 2017 Sep 25.
10
The role of diffusion MRI in neuroscience.扩散磁共振成像在神经科学中的作用。
NMR Biomed. 2019 Apr;32(4):e3762. doi: 10.1002/nbm.3762. Epub 2017 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验