Suppr超能文献

在不大量增加用水量的情况下提高水稻冠层光合作用是可行的——基于自由空气 CO2 富集的模型。

Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO enrichment.

机构信息

Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.

Department of Biology and Chemistry, Azusa Pacific University, Azusa, CA, USA.

出版信息

Glob Chang Biol. 2018 Mar;24(3):1321-1341. doi: 10.1111/gcb.13981. Epub 2017 Dec 15.

Abstract

Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO concentration ([CO ]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high-yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO ] (A-CO and E-CO , respectively) via leaf ecophysiological parameters derived from a free-air CO enrichment (FACE) experiment. Takanari had 4%-5% higher evapotranspiration than Koshihikari under both A-CO and E-CO , and E-CO decreased evapotranspiration of both varieties by 4%-6%. Therefore, if Takanari was cultivated under future [CO ] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO ] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%-40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high-stomatal conductance can play a key role in enhancing productivity and moderating heat-induced damage to grain quality in the coming decades, without significantly increasing crop water use.

摘要

提高冠层光合作用速率是增加未来作物产量的关键之一;然而,这通常需要额外的水输入,因为通过气孔的水分损失增加。目前,低地水稻冠层消耗大量的水,任何进一步增加用水量都可能对当地水资源产生重大影响。这种情况因环境条件的变化而变得更加复杂,例如大气 CO 浓度升高 ([CO ])。在这里,我们通过源自自由空气 CO 富集(FACE)实验的叶片生理参数,对高产品种(水稻 cv. Takanari)和普通品种(cv. Koshihikari)完全发育的水稻冠层的蒸散量进行了建模和比较,在环境和升高的 [CO ] 下(分别为 A-CO 和 E-CO)。在 A-CO 和 E-CO 下,Takanari 的蒸散量比 Koshihikari 高 4%-5%,而 E-CO 使两种品种的蒸散量降低了 4%-6%。因此,如果在未来的 [CO ] 条件下种植 Takanari,那么在当前 [CO ] 下种植 Koshihikari 的用水量可以保持在相同水平,同时增加 36%的冠层光合作用。敏感性分析确定,气孔导度是 Takanari 比 Koshihikari 具有更高冠层光合作用的重要生理因素。Takanari 的气孔导度比 Koshihikari 高 30%-40%;然而,由于自然田间存在高空气动力学阻力和 Takanari 比 Koshihikari 低的冠层温度,导致蒸散量的差异较小。尽管品种间的蒸散量差异较小,但模型模拟表明,与 Koshihikari 相比,Takanari 明显降低了行星边界层内的冠层和空气温度。我们的结果表明,具有高气孔导度特征的低地水稻品种可以在未来几十年中发挥关键作用,提高生产力并减轻热诱导的谷物质量受损,而不会显著增加作物用水量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验