Suppr超能文献

使用超高频传感器和盲信号分离技术检测局部放电源

Detection of Partial Discharge Sources Using UHF Sensors and Blind Signal Separation.

作者信息

Boya Carlos, Robles Guillermo, Parrado-Hernández Emilio, Ruiz-Llata Marta

机构信息

Department of Electronic Technology, Universidad Carlos III de Madrid, Avda, Universidad, 30, 28911 Leganés, Madrid, Spain.

Department of Electrical Engineering, Universidad Carlos III de Madrid, Avda, Universidad, 30, 28911 Leganés, Madrid, Spain.

出版信息

Sensors (Basel). 2017 Nov 15;17(11):2625. doi: 10.3390/s17112625.

Abstract

The measurement of the emitted electromagnetic energy in the UHF region of the spectrum allows the detection of partial discharges and, thus, the on-line monitoring of the condition of the insulation of electrical equipment. Unfortunately, determining the affected asset is difficult when there are several simultaneous insulation defects. This paper proposes the use of an independent component analysis (ICA) algorithm to separate the signals coming from different partial discharge (PD) sources. The performance of the algorithm has been tested using UHF signals generated by test objects. The results are validated by two automatic classification techniques: support vector machines and similarity with class mean. Both methods corroborate the suitability of the algorithm to separate the signals emitted by each PD source even when they are generated by the same type of insulation defect.

摘要

对频谱中UHF区域发射的电磁能量进行测量,能够检测局部放电,从而实现对电气设备绝缘状况的在线监测。不幸的是,当存在多个同时发生的绝缘缺陷时,确定受影响的资产很困难。本文提出使用独立分量分析(ICA)算法来分离来自不同局部放电(PD)源的信号。该算法的性能已通过测试对象产生的UHF信号进行了测试。结果通过两种自动分类技术进行了验证:支持向量机和与类均值的相似度。两种方法都证实了该算法即使在由同一类型绝缘缺陷产生信号时,也适用于分离每个PD源发出的信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4324/5712867/7d7577bc6023/sensors-17-02625-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验