Banal James L, Kondo Toru, Veneziano Rémi, Bathe Mark, Schlau-Cohen Gabriela S
Energy Frontier Research Center for Excitonics, ‡Department of Biological Engineering, and §Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
J Phys Chem Lett. 2017 Dec 7;8(23):5827-5833. doi: 10.1021/acs.jpclett.7b01898. Epub 2017 Nov 16.
Achieving nanoscale spatial and electronic control over the formation of dye aggregates is a major synthetic challenge due to their typically inhomogeneous self-assembly, which limits control over their higher-order organization. To address these challenges, synthetic DNA-templated pseudoisocyanine (PIC) J-aggregates were recently introduced. However, the dependence of the photophysics of the superradiant exciton on the underlying DNA template length and the impact of static disorder on energy transfer through these PIC J-aggregates remain unknown. We examine the delocalization length progression of superradiant PIC excitons by varying the length of poly-A DNA tracts that template PIC J-aggregates. We then investigate the energy-transfer efficiency from PIC J-aggregates with DNA duplex template length, which we found to be limited by static disorder. Utilizing the self-assembled and selective formation of superradiant excitons on DNA provides a platform to determine the function of delocalized excitons in the context of nanoscale energy transport.
由于染料聚集体通常具有不均匀的自组装特性,这限制了对其高阶组织的控制,因此在纳米尺度上对染料聚集体的形成实现空间和电子控制是一项重大的合成挑战。为应对这些挑战,最近引入了合成DNA模板化的假异氰酸(PIC)J-聚集体。然而,超辐射激子的光物理性质对基础DNA模板长度的依赖性以及静态无序对通过这些PIC J-聚集体的能量转移的影响仍然未知。我们通过改变模板化PIC J-聚集体的聚A DNA片段的长度来研究超辐射PIC激子的离域长度进展。然后,我们研究了具有DNA双链模板长度的PIC J-聚集体的能量转移效率,发现其受到静态无序的限制。利用DNA上超辐射激子的自组装和选择性形成提供了一个平台,以确定离域激子在纳米尺度能量传输背景下的功能。