Suppr超能文献

基于 CRISPR/Cas9 的探索:酿酒酵母中乳酸盐外排 elusive 机制。

A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae.

机构信息

Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.

出版信息

FEMS Yeast Res. 2017 Dec 1;17(8). doi: 10.1093/femsyr/fox085.

Abstract

CRISPR/Cas9-based genome editing allows rapid, simultaneous modification of multiple genetic loci in Saccharomyces cerevisiae. Here, this technique was used in a functional analysis study aimed at identifying the hitherto unknown mechanism of lactate export in this yeast. First, an S. cerevisiae strain was constructed with deletions in 25 genes encoding transport proteins, including the complete aqua(glycero)porin family and all known carboxylic acid transporters. The 25-deletion strain was then transformed with an expression cassette for Lactobacillus casei lactate dehydrogenase (LcLDH). In anaerobic, glucose-grown batch cultures this strain exhibited a lower specific growth rate (0.15 vs. 0.25 h-1) and biomass-specific lactate production rate (0.7 vs. 2.4 mmol g biomass-1 h-1) than an LcLDH-expressing reference strain. However, a comparison of the two strains in anaerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) showed identical lactate production rates. These results indicate that, although deletion of the 25 transporter genes affected the maximum specific growth rate, it did not impact lactate export rates when analysed at a fixed specific growth rate. The 25-deletion strain provides a first step towards a 'minimal transportome' yeast platform, which can be applied for functional analysis of specific (heterologous) transport proteins as well as for evaluation of metabolic engineering strategies.

摘要

基于 CRISPR/Cas9 的基因组编辑允许在酿酒酵母中快速、同时修饰多个遗传基因座。在这里,这项技术被用于一项功能分析研究,旨在确定该酵母中尚未知的乳酸出口机制。首先,构建了一个在 25 个编码转运蛋白的基因中缺失的酿酒酵母菌株,这些基因包括完整的 aqua(glycero)porin 家族和所有已知的羧酸转运蛋白。然后,将 25 缺失菌株转化为表达盒,用于乳酸乳球菌乳酸脱氢酶(LcLDH)。在厌氧、葡萄糖生长的分批培养中,与表达 LcLDH 的参考菌株相比,该菌株的比生长速率(0.15 对 0.25 h-1)和生物质特异性乳酸产生速率(0.7 对 2.4 mmol g 生物质-1 h-1)较低。然而,在厌氧葡萄糖限制恒化器培养物(稀释率 0.10 h-1)中对这两个菌株进行比较时,发现乳酸产生速率相同。这些结果表明,尽管删除 25 个转运体基因影响了最大比生长速率,但在以固定比生长速率分析时,它并没有影响乳酸外排率。25 缺失菌株为“最小转运体”酵母平台提供了第一步,该平台可用于特定(异源)转运蛋白的功能分析以及代谢工程策略的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验