Suppr超能文献

基于累积复发事件数据的证据综合在临床试验设计与分析中的应用。

Evidence synthesis from aggregate recurrent event data for clinical trial design and analysis.

机构信息

Novartis Pharma AG, Basel, Switzerland.

出版信息

Stat Med. 2018 Mar 15;37(6):867-882. doi: 10.1002/sim.7549. Epub 2017 Nov 20.

Abstract

Information from historical trials is important for the design, interim monitoring, analysis, and interpretation of clinical trials. Meta-analytic models can be used to synthesize the evidence from historical data, which are often only available in aggregate form. We consider evidence synthesis methods for trials with recurrent event endpoints, which are common in many therapeutic areas. Such endpoints are typically analyzed by negative binomial regression. However, the individual patient data necessary to fit such a model are usually unavailable for historical trials reported in the medical literature. We describe approaches for back-calculating model parameter estimates and their standard errors from available summary statistics with various techniques, including approximate Bayesian computation. We propose to use a quadratic approximation to the log-likelihood for each historical trial based on 2 independent terms for the log mean rate and the log of the dispersion parameter. A Bayesian hierarchical meta-analysis model then provides the posterior predictive distribution for these parameters. Simulations show this approach with back-calculated parameter estimates results in very similar inference as using parameter estimates from individual patient data as an input. We illustrate how to design and analyze a new randomized placebo-controlled exacerbation trial in severe eosinophilic asthma using data from 11 historical trials.

摘要

从历史试验中获得的信息对于临床试验的设计、中期监测、分析和解释非常重要。可以使用荟萃分析模型来综合历史数据中的证据,而这些数据通常仅以汇总形式提供。我们考虑了具有复发性事件终点的试验的证据综合方法,这些终点在许多治疗领域都很常见。此类终点通常通过负二项式回归进行分析。然而,对于医学文献中报告的历史试验,通常无法获得拟合此类模型所需的个体患者数据。我们描述了从各种技术(包括近似贝叶斯计算)的可用汇总统计数据中反推模型参数估计值及其标准误差的方法。我们建议基于对数均值率和离散参数的对数的 2 个独立项,为每个历史试验的对数似然函数使用二次逼近。然后,贝叶斯层次荟萃分析模型为这些参数提供后验预测分布。模拟结果表明,使用反推参数估计值的方法与将个体患者数据的参数估计值作为输入进行推断非常相似。我们说明了如何使用 11 项历史试验的数据来设计和分析新的严重嗜酸性粒细胞性哮喘随机安慰剂对照恶化试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验