Suppr超能文献

CM-101:一种针对 I 型胶原的磁共振成像探针,用于检测肝纤维化。

CM-101: Type I Collagen-targeted MR Imaging Probe for Detection of Liver Fibrosis.

机构信息

From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St, Suite 2301, Charlestown, MA 02129 (C.T.F., E.M.G., I.R., J.K., P.C.); Merck Research Laboratories, Kenilworth, NJ (R.K., M.M.B., C.Z., Y.Z., T.E.A., M.K., S.P.); Collagen Medical, Belmont, Mass (I.R., H.D., V.H.); Departments of Pathology (R.M.) and Surgical Oncology (G.A., K.L., L.W., K.K.T., B.C.F.), Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Mass; and Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass (P.C.).

出版信息

Radiology. 2018 May;287(2):581-589. doi: 10.1148/radiol.2017170595. Epub 2017 Nov 20.

Abstract

Purpose To evaluate the biodistribution, metabolism, and pharmacokinetics of a new type I collagen-targeted magnetic resonance (MR) probe, CM-101, and to assess its ability to help quantify liver fibrosis in animal models. Materials and Methods Biodistribution, pharmacokinetics, and stability of CM-101 in rats were measured with mass spectrometry. Bile duct-ligated (BDL) and sham-treated rats were imaged 19 days after the procedure by using a 1.5-T clinical MR imaging unit. Mice were treated with carbon tetrachloride (CCl) or with vehicle two times a week for 10 weeks and were imaged with a 7.0-T preclinical MR imaging unit at baseline and 1 week after the last CCl treatment. Animals were imaged before and after injection of 10 µmol/kg CM-101. Change in contrast-to-noise ratio (ΔCNR) between liver and muscle tissue after CM-101 injection was used to quantify liver fibrosis. Liver tissue was analyzed for Sirius Red staining and hydroxyproline content. The institutional subcommittee for research animal care approved all in vivo procedures. Results CM-101 demonstrated rapid blood clearance (half-life = 6.8 minutes ± 2.4) and predominately renal elimination in rats. Biodistribution showed low tissue gadolinium levels at 24 hours (<3.9% injected dose [ID]/g ± 0.6) and 10-fold lower levels at 14 days (<0.33% ID/g ± 12) after CM-101 injection with negligible accumulation in bone (0.07% ID/g ± 0.02 and 0.010% ID/g ± 0.004 at 1 and 14 days, respectively). ΔCNR was significantly (P < .001) higher in BDL rats (13.6 ± 3.2) than in sham-treated rats (5.7 ± 4.2) and in the CCl-treated mice (18.3 ± 6.5) compared with baseline values (5.2 ± 1.0). Conclusion CM-101 demonstrated fast blood clearance and whole-body elimination, negligible accumulation of gadolinium in bone or tissue, and robust detection of fibrosis in rat BDL and mouse CCl models of liver fibrosis. RSNA, 2017 Online supplemental material is available for this article.

摘要

目的 评估新型 I 型胶原靶向磁共振(MR)探针 CM-101 的体内分布、代谢和药代动力学特征,并评估其在动物模型中定量评估肝纤维化的能力。

材料与方法 采用质谱法测量 CM-101 在大鼠体内的分布、药代动力学和稳定性。BDL 造模及假手术处理大鼠于造模后 19 天在 1.5T 临床磁共振成像仪上进行成像。采用碳氯仿(CCl)每周两次处理小鼠 10 周,在基线和最后一次 CCl 处理后 1 周,在 7.0T 临床前磁共振成像仪上进行成像。注射 10μmol/kg CM-101 前后对动物进行成像。注射 CM-101 后肝组织与肌肉组织间的对比噪声比(CNR)变化用于定量评估肝纤维化。对肝组织进行天狼星红染色和羟脯氨酸含量分析。动物实验获得机构动物护理和使用委员会批准。

结果 CM-101 在大鼠体内迅速清除(半衰期=6.8 分钟±2.4),主要经肾脏排泄。组织钆分布显示,注射后 24 小时(<3.9%注射剂量[ID]/g±0.6)和 14 天(<0.33%ID/g±12)时组织内的钆含量较低,注射后 14 天时骨内的蓄积量可忽略不计(分别为 0.07%ID/g±0.02 和 0.010%ID/g±0.004)。BDL 大鼠(13.6±3.2)与假手术大鼠(5.7±4.2)和 CCl 处理小鼠(18.3±6.5)相比,CM-101 注射后ΔCNR 显著升高(P<.001)。

结论 CM-101 具有快速的血液清除率和全身清除率,钆在骨或组织内的蓄积量低,可灵敏检测大鼠 BDL 和小鼠 CCl 肝纤维化模型的纤维化。

放射学学会,2017 年

在线补充材料 本文有配套的在线补充材料。

相似文献

1
CM-101: Type I Collagen-targeted MR Imaging Probe for Detection of Liver Fibrosis.
Radiology. 2018 May;287(2):581-589. doi: 10.1148/radiol.2017170595. Epub 2017 Nov 20.
2
Quantification of Liver Fibrosis at T1 and T2 Mapping with Extracellular Volume Fraction MRI: Preclinical Results.
Radiology. 2018 Sep;288(3):748-754. doi: 10.1148/radiol.2018180051. Epub 2018 Jun 26.
3
Molecular MRI of collagen to diagnose and stage liver fibrosis.
J Hepatol. 2013 Nov;59(5):992-8. doi: 10.1016/j.jhep.2013.06.026. Epub 2013 Jul 6.
4
Molecular MR imaging of liver fibrosis: a feasibility study using rat and mouse models.
J Hepatol. 2012 Sep;57(3):549-55. doi: 10.1016/j.jhep.2012.04.035. Epub 2012 May 24.
5
T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary duct ligation model.
Radiology. 2011 Jun;259(3):712-9. doi: 10.1148/radiol.11101638. Epub 2011 Mar 24.
6
3D molecular MR imaging of liver fibrosis and response to rapamycin therapy in a bile duct ligation rat model.
J Hepatol. 2015 Sep;63(3):689-96. doi: 10.1016/j.jhep.2015.04.029. Epub 2015 May 25.
10
Quantitative evaluation of liver function with MRI Using Gd-EOB-DTPA.
Korean J Radiol. 2004 Oct-Dec;5(4):231-9. doi: 10.3348/kjr.2004.5.4.231.

引用本文的文献

1
Fibrotic Disease: from Signaling Pathways and Biomarkers to Molecular Imaging.
Mol Imaging Biol. 2025 Aug 11. doi: 10.1007/s11307-025-02038-9.
2
Differential extracellular matrix proteomic signatures in colorectal tumors from Appalachian and non-Appalachian patients.
Oncol Lett. 2025 Jun 26;30(3):413. doi: 10.3892/ol.2025.15159. eCollection 2025 Sep.
3
Manganese-based type I collagen-targeting MRI probe for in vivo imaging of liver fibrosis.
Npj Imaging. 2025 Apr 9;3(1):14. doi: 10.1038/s44303-025-00075-1.
6
Manganese-based type I collagen-targeting MRI probe for in vivo imaging of liver fibrosis.
Res Sq. 2024 Nov 22:rs.3.rs-5349052. doi: 10.21203/rs.3.rs-5349052/v1.
8
Non-invasive in vivo imaging of changes in Collagen III turnover in myocardial fibrosis.
Npj Imaging. 2024;2(1):33. doi: 10.1038/s44303-024-00037-z. Epub 2024 Sep 17.
9
Non-invasive diagnosis of liver fibrosis via MRI using targeted gadolinium-based nanoparticles.
Eur J Nucl Med Mol Imaging. 2024 Dec;52(1):48-61. doi: 10.1007/s00259-024-06894-5. Epub 2024 Sep 5.
10
Advances in Noninvasive Molecular Imaging Probes for Liver Fibrosis Diagnosis.
Biomater Res. 2024 Jul 1;28:0042. doi: 10.34133/bmr.0042. eCollection 2024.

本文引用的文献

2
3D molecular MR imaging of liver fibrosis and response to rapamycin therapy in a bile duct ligation rat model.
J Hepatol. 2015 Sep;63(3):689-96. doi: 10.1016/j.jhep.2015.04.029. Epub 2015 May 25.
3
Noninvasive Biomarkers of Liver Fibrosis: Clinical Applications and Future Directions.
Curr Pathobiol Rep. 2014 Dec 1;2(4):245-256. doi: 10.1007/s40139-014-0061-z.
4
Molecular magnetic resonance imaging of pulmonary fibrosis in mice.
Am J Respir Cell Mol Biol. 2013 Dec;49(6):1120-6. doi: 10.1165/rcmb.2013-0039OC.
5
Molecular MRI of collagen to diagnose and stage liver fibrosis.
J Hepatol. 2013 Nov;59(5):992-8. doi: 10.1016/j.jhep.2013.06.026. Epub 2013 Jul 6.
6
Molecular MR imaging of liver fibrosis: a feasibility study using rat and mouse models.
J Hepatol. 2012 Sep;57(3):549-55. doi: 10.1016/j.jhep.2012.04.035. Epub 2012 May 24.
7
Death in the United States, 2009.
NCHS Data Brief. 2011 Jul(64):1-8.
8
Comparative biodistribution of 12 ¹¹¹In-labelled gastrin/CCK2 receptor-targeting peptides.
Eur J Nucl Med Mol Imaging. 2011 Aug;38(8):1410-6. doi: 10.1007/s00259-011-1806-0. Epub 2011 Apr 2.
9
Evolving challenges in hepatic fibrosis.
Nat Rev Gastroenterol Hepatol. 2010 Aug;7(8):425-36. doi: 10.1038/nrgastro.2010.97. Epub 2010 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验