Suppr超能文献

首先:风险模型性能指标应反映临床应用情况。

First things first: risk model performance metrics should reflect the clinical application.

作者信息

Kerr Kathleen F, Janes Holly

机构信息

Department of Biostatistics, University of Washington, Box 357232, Seattle, WA, 98115, U.S.A.

Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease and Public Health Sciences Divisions, 1100 Fairview Ave N M2 C200, Seattle, WA, 98109, U.S.A.

出版信息

Stat Med. 2017 Dec 10;36(28):4503-4508. doi: 10.1002/sim.7341.

Abstract

Developing new measures of risk model performance is an active line of research, often motivated by the conventional wisdom that area under the ROC curve is an 'insensitive' measure of the additional predictive capacity offered by new biomarkers. Without endorsing area under the ROC curve, we argue that this charge is not substantiated. Three articles in this issue discuss alternative metrics of risk model performance: NRI(p) (two-category net reclassification index at the event rate), integrated discrimination index, and R-squared statistics. Guided by the principle that performance metrics should match the intended use of a risk prediction model, we argue that routine use of these indices is not justified. Instead, we recommend decision-theoretic measures to evaluate risk prediction models for applications in which clinically relevant risk thresholds have been established for classifying individuals. In the absence of established risk thresholds, additional research is needed to develop suitable metrics. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

开发风险模型性能的新度量方法是一个活跃的研究领域,其动机通常源于一种传统观念,即ROC曲线下面积是对新生物标志物所提供的额外预测能力的一种“不敏感”度量。在不认可ROC曲线下面积的情况下,我们认为这种指责是没有根据的。本期的三篇文章讨论了风险模型性能的替代指标:NRI(p)(事件发生率下的两类净重新分类指数)、综合判别指数和R平方统计量。基于性能指标应与风险预测模型的预期用途相匹配的原则,我们认为常规使用这些指数是不合理的。相反,我们建议采用决策理论方法来评估风险预测模型,以用于已为个体分类建立了临床相关风险阈值的应用场景。在没有既定风险阈值的情况下,需要进行更多研究以开发合适的指标。版权所有© 2017约翰威立父子有限公司。

相似文献

1
First things first: risk model performance metrics should reflect the clinical application.
Stat Med. 2017 Dec 10;36(28):4503-4508. doi: 10.1002/sim.7341.
2
Clinical risk reclassification at 10 years.
Stat Med. 2017 Dec 10;36(28):4498-4502. doi: 10.1002/sim.7340.
3
Net reclassification index at event rate: properties and relationships.
Stat Med. 2017 Dec 10;36(28):4455-4467. doi: 10.1002/sim.7041. Epub 2016 Jul 18.
4
Asymptotic distribution of ∆AUC, NRIs, and IDI based on theory of U-statistics.
Stat Med. 2017 Sep 20;36(21):3334-3360. doi: 10.1002/sim.7333. Epub 2017 Jun 19.
5
Simpson's paradox in the integrated discrimination improvement.
Stat Med. 2017 Dec 10;36(28):4468-4481. doi: 10.1002/sim.6862. Epub 2016 Jan 5.
7
New metrics for assessing diagnostic potential of candidate biomarkers.
Clin J Am Soc Nephrol. 2012 Aug;7(8):1355-64. doi: 10.2215/CJN.09590911. Epub 2012 Jun 7.
8
Calibration of risk prediction models: impact on decision-analytic performance.
Med Decis Making. 2015 Feb;35(2):162-9. doi: 10.1177/0272989X14547233. Epub 2014 Aug 25.
9
Using the weighted area under the net benefit curve for decision curve analysis.
BMC Med Inform Decis Mak. 2016 Jul 18;16:94. doi: 10.1186/s12911-016-0336-x.
10

引用本文的文献

1
Net Reclassification Index Statistics Do Not Help Assess New Risk Models.
Radiology. 2023 Mar;306(3):e222343. doi: 10.1148/radiol.222343. Epub 2022 Nov 15.
4
Three myths about risk thresholds for prediction models.
BMC Med. 2019 Oct 25;17(1):192. doi: 10.1186/s12916-019-1425-3.
5
Cardiovascular disease: The rise of the genetic risk score.
PLoS Med. 2018 Mar 30;15(3):e1002546. doi: 10.1371/journal.pmed.1002546. eCollection 2018 Mar.

本文引用的文献

1
Simpson's paradox in the integrated discrimination improvement.
Stat Med. 2017 Dec 10;36(28):4468-4481. doi: 10.1002/sim.6862. Epub 2016 Jan 5.
2
Discrimination slope and integrated discrimination improvement - properties, relationships and impact of calibration.
Stat Med. 2017 Dec 10;36(28):4482-4490. doi: 10.1002/sim.7139. Epub 2016 Oct 3.
3
Net reclassification index at event rate: properties and relationships.
Stat Med. 2017 Dec 10;36(28):4455-4467. doi: 10.1002/sim.7041. Epub 2016 Jul 18.
4
Assessing the Clinical Impact of Risk Prediction Models With Decision Curves: Guidance for Correct Interpretation and Appropriate Use.
J Clin Oncol. 2016 Jul 20;34(21):2534-40. doi: 10.1200/JCO.2015.65.5654. Epub 2016 May 31.
5
The Net Reclassification Index (NRI): a Misleading Measure of Prediction Improvement Even with Independent Test Data Sets.
Stat Biosci. 2015 Oct 1;7(2):282-295. doi: 10.1007/s12561-014-9118-0. Epub 2014 Aug 23.
6
Net risk reclassification p values: valid or misleading?
J Natl Cancer Inst. 2014 Apr;106(4):dju041. doi: 10.1093/jnci/dju041. Epub 2014 Mar 28.
7
Does the net reclassification improvement help us evaluate models and markers?
Ann Intern Med. 2014 Jan 21;160(2):136-7. doi: 10.7326/M13-2841.
8
Commentary: On NRI, IDI, and "good-looking" statistics with nothing underneath.
Epidemiology. 2014 Mar;25(2):265-7. doi: 10.1097/EDE.0000000000000063.
9
Net reclassification indices for evaluating risk prediction instruments: a critical review.
Epidemiology. 2014 Jan;25(1):114-21. doi: 10.1097/EDE.0000000000000018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验