FIM2Lab-Functional Interfacial Materials and Membranes, School of Chemical Engineering, The University of Queensland, St. Lucia, Qld, 4072, Australia.
Institut Européen des Membranes, UMR 5635-CNRS-ENSCM-UM, Université de Montpellier, cc 047, Place Eugène Bataillon, 34095, Montpellier-Cedex 5, France.
Environ Sci Pollut Res Int. 2018 Feb;25(4):3628-3635. doi: 10.1007/s11356-017-0530-0. Epub 2017 Nov 21.
Environmentally emerging micro-pollutant, caffeine, was mineralized (i.e., full degradation) by the isomorphic incorporation of Fe into silicalite-1 (mordenite framework inverted (MFI) structure zeolite) through a microwave synthesis method. The Fe incorporation conferred mesopore formation that facilitated caffeine access and transport to the MFI zeolite structure. Increasing the Fe content favored the formation of Fe(O) sites within the MFI structure. The catalytic activity for the degradation of caffeine increased as a function of Fe(O) sites via a Fenton-like heterogeneous reaction, otherwise not attainable using Fe-free pure MFI zeolites. Caffeine degradation reached 96% (TOC based) for zeolites containing 2.33% of Fe.
环境新兴的微污染物咖啡因,通过微波合成方法被铁同晶取代(即完全降解)到硅沸石-1(方钠石骨架反转(MFI)结构沸石)中。铁的掺入赋予介孔形成,从而促进咖啡因进入和传输到 MFI 沸石结构。增加铁含量有利于在 MFI 结构内形成 Fe(O)位。通过类 Fenton 非均相反应,降解咖啡因的催化活性随着 Fe(O)位的增加而增加,而使用不含铁的纯 MFI 沸石则无法实现。含有 2.33%铁的沸石的咖啡因降解率达到 96%(基于 TOC)。