Suppr超能文献

论多测量向量的块稀疏性

ON THE BLOCK-SPARSITY OF MULTIPLE-MEASUREMENT VECTORS.

作者信息

Shekaramiz Mohammad, Moon Todd K, Gunther Jacob H

机构信息

Electrical and Computer Engineering Department and Information Dynamics Laboratory Utah State University.

出版信息

2015 IEEE Signal Process Signal Process Educ Workshop SP SPE (2015). 2015 Aug;2015:220-225. doi: 10.1109/DSP-SPE.2015.7369556.

Abstract

Based on the compressive sensing (CS) theory, it is possible to recover signals, which are either compressible or sparse under some suitable basis, via a small number of non-adaptive linear measurements. In this paper, we investigate recovering of block-sparse signals via multiple measurement vectors (MMVs) in the presence of noise. In this case, we consider one of the existing algorithms which provides a satisfactory estimate in terms of minimum mean-squared error but a non-sparse solution. Here, the algorithm is first modified to result in sparse solutions. Then, further modification is performed to account for the unknown block sparsity structure in the solution, as well. The performance of the proposed algorithm is demonstrated by experimental simulations and comparisons with some other algorithms for the sparse recovery problem.

摘要

基于压缩感知(CS)理论,在某些合适的基下,通过少量非自适应线性测量就有可能恢复可压缩或稀疏的信号。在本文中,我们研究在存在噪声的情况下通过多测量向量(MMV)恢复块稀疏信号。在这种情况下,我们考虑现有的一种算法,该算法在最小均方误差方面能提供令人满意的估计,但得到的是一个非稀疏解。在此,首先对该算法进行修改以得到稀疏解。然后,还进行了进一步修改以考虑解中未知的块稀疏结构。通过实验仿真以及与其他一些用于稀疏恢复问题的算法进行比较,证明了所提算法的性能。

相似文献

1
ON THE BLOCK-SPARSITY OF MULTIPLE-MEASUREMENT VECTORS.
2015 IEEE Signal Process Signal Process Educ Workshop SP SPE (2015). 2015 Aug;2015:220-225. doi: 10.1109/DSP-SPE.2015.7369556.
2
Bayesian Compressive Sensing of Sparse Signals with Unknown Clustering Patterns.
Entropy (Basel). 2019 Mar 5;21(3):247. doi: 10.3390/e21030247.
3
Hierarchical Bayesian Approach For Jointly-Sparse Solution Of Multiple-Measurement Vectors.
Conf Rec Asilomar Conf Signals Syst Comput. 2014 Nov;2014:1962-1966. doi: 10.1109/ACSSC.2014.7094813. Epub 2015 Apr 27.
4
On The Block-Sparse Solution of Single Measurement Vectors.
Conf Rec Asilomar Conf Signals Syst Comput. 2015 Nov;2015:508-512. doi: 10.1109/ACSSC.2015.7421180. Epub 2016 Feb 29.
5
Computing sparse representations of multidimensional signals using Kronecker bases.
Neural Comput. 2013 Jan;25(1):186-220. doi: 10.1162/NECO_a_00385. Epub 2012 Sep 28.
8
Sparsity estimation from compressive projections via sparse random matrices.
EURASIP J Adv Signal Process. 2018;2018(1):56. doi: 10.1186/s13634-018-0578-0. Epub 2018 Sep 10.
9
Compressive Sensing Image Restoration Using Adaptive Curvelet Thresholding and Nonlocal Sparse Regularization.
IEEE Trans Image Process. 2016 Jul;25(7):3126-3140. doi: 10.1109/TIP.2016.2562563. Epub 2016 May 3.

引用本文的文献

1
On The Block-Sparse Solution of Single Measurement Vectors.
Conf Rec Asilomar Conf Signals Syst Comput. 2015 Nov;2015:508-512. doi: 10.1109/ACSSC.2015.7421180. Epub 2016 Feb 29.

本文引用的文献

1
Hierarchical Bayesian Approach For Jointly-Sparse Solution Of Multiple-Measurement Vectors.
Conf Rec Asilomar Conf Signals Syst Comput. 2014 Nov;2014:1962-1966. doi: 10.1109/ACSSC.2014.7094813. Epub 2015 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验