Suppr超能文献

探测可预测性的极限:复杂食物网中混沌动态的数据同化。

Probing the limits of predictability: data assimilation of chaotic dynamics in complex food webs.

机构信息

Department of Civil and Environmental Engineering, University of California Irvine, Irvine, CA, 92697-1075, USA.

Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Ecol Lett. 2018 Jan;21(1):93-103. doi: 10.1111/ele.12876. Epub 2017 Nov 27.

Abstract

The daunting complexity of ecosystems has led ecologists to use mathematical modelling to gain understanding of ecological relationships, processes and dynamics. In pursuit of mathematical tractability, these models use simplified descriptions of key patterns, processes and relationships observed in nature. In contrast, ecological data are often complex, scale-dependent, space-time correlated, and governed by nonlinear relations between organisms and their environment. This disparity in complexity between ecosystem models and data has created a large gap in ecology between model and data-driven approaches. Here, we explore data assimilation (DA) with the Ensemble Kalman filter to fuse a two-predator-two-prey model with abundance data from a 2600+ day experiment of a plankton community. We analyse how frequently we must assimilate measured abundances to predict accurately population dynamics, and benchmark our population model's forecast horizon against a simple null model. Results demonstrate that DA enhances the predictability and forecast horizon of complex community dynamics.

摘要

生态系统的复杂性令人望而却步,这促使生态学家利用数学建模来理解生态关系、过程和动态。为了追求数学上的可处理性,这些模型使用简化的描述来描述自然界中观察到的关键模式、过程和关系。相比之下,生态数据通常是复杂的,依赖于尺度,时空相关,并且受到生物与其环境之间非线性关系的控制。这种生态系统模型和数据之间的复杂性差异,在生态学中造成了模型和数据驱动方法之间的巨大差距。在这里,我们探索了使用集合卡尔曼滤波器进行数据同化(DA),以将一个具有两个捕食者和两个猎物的模型与浮游生物群落的 2600 多天实验中的丰度数据融合。我们分析了我们必须多频繁地同化测量丰度,以准确地预测种群动态,并将我们的种群模型的预测范围与一个简单的零模型进行基准比较。结果表明,DA 提高了复杂群落动态的可预测性和预测范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验