Suppr超能文献

利用术中血流动力学监测数据预测术后结果。

Prediction of postoperative outcomes using intraoperative hemodynamic monitoring data.

机构信息

Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, MA, USA.

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Sci Rep. 2017 Nov 27;7(1):16376. doi: 10.1038/s41598-017-16233-4.

Abstract

Major surgeries can result in high rates of adverse postoperative events. Reliable prediction of which patient might be at risk for such events may help guide peri- and postoperative care. We show how archiving and mining of intraoperative hemodynamic data in orthotopic liver transplantation (OLT) can aid in the prediction of postoperative 180-day mortality and acute renal failure (ARF), improving upon predictions that rely on preoperative information only. From 101 patient records, we extracted 15 preoperative features from clinical records and 41 features from intraoperative hemodynamic signals. We used logistic regression with leave-one-out cross-validation to predict outcomes, and incorporated methods to limit potential model instabilities from feature multicollinearity. Using only preoperative features, mortality prediction achieved an area under the receiver operating characteristic curve (AUC) of 0.53 (95% CI: 0.44-0.78). By using intraoperative features, performance improved significantly to 0.82 (95% CI: 0.56-0.91, P = 0.001). Similarly, including intraoperative features (AUC = 0.82; 95% CI: 0.66-0.94) in ARF prediction improved performance over preoperative features (AUC = 0.72; 95% CI: 0.50-0.85), though not significantly (P = 0.32). We conclude that inclusion of intraoperative hemodynamic features significantly improves prediction of postoperative events in OLT. Features strongly associated with occurrence of both outcomes included greater intraoperative central venous pressure and greater transfusion volumes.

摘要

重大手术可能导致术后不良事件发生率较高。可靠地预测哪些患者可能存在此类事件的风险,可能有助于指导围手术期护理。我们展示了如何在原位肝移植(OLT)中存档和挖掘术中血流动力学数据,以帮助预测术后 180 天死亡率和急性肾功能衰竭(ARF),从而改善仅依赖术前信息的预测。从 101 例患者记录中,我们从临床记录中提取了 15 个术前特征和术中血流动力学信号中的 41 个特征。我们使用带有留一交叉验证的逻辑回归来预测结果,并采用方法来限制特征多重共线性可能导致的模型不稳定。仅使用术前特征,死亡率预测的受试者工作特征曲线下面积(AUC)为 0.53(95%CI:0.44-0.78)。通过使用术中特征,性能显著提高至 0.82(95%CI:0.56-0.91,P=0.001)。同样,将术中特征(AUC=0.82;95%CI:0.66-0.94)纳入 ARF 预测中,与术前特征(AUC=0.72;95%CI:0.50-0.85)相比,性能有所提高,但无统计学意义(P=0.32)。我们得出结论,纳入术中血流动力学特征可显著提高 OLT 术后事件的预测能力。与两个结局发生都强烈相关的特征包括术中中心静脉压更高和输血量更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b0d/5703992/edf5712d7842/41598_2017_16233_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验