Suppr超能文献

使用CP2K对顺磁固体的核磁共振化学位移进行大规模计算。

Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.

作者信息

Mondal Arobendo, Gaultois Michael W, Pell Andrew J, Iannuzzi Marcella, Grey Clare P, Hutter Jürg, Kaupp Martin

机构信息

Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin , Sekretariat C7, Strasse des 17 Juni 135, D-10623 Berlin, Germany.

Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.

出版信息

J Chem Theory Comput. 2018 Jan 9;14(1):377-394. doi: 10.1021/acs.jctc.7b00991. Epub 2017 Dec 13.

Abstract

Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for LiV(PO), for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

摘要

利用CP2K代码高效的高斯增强平面波实现方式,报告了对扩展顺磁固体(pNMR)的核磁共振(NMR)化学位移的大规模计算。将使用杂化泛函获得的超精细耦合与使用梯度校正泛函计算的g张量和轨道屏蔽相结合,可以得到对pNMR化学位移的接触、赝接触和轨道位移贡献。由于CP2K具有高效且高度并行的性能,因此可以使用扩展的高斯基组来研究各种具有大晶胞的材料。首先,与典型的量子化学代码相比,在一个大的超胞中对分子进行了不同方法对pNMR化学位移不同贡献的验证。然后,将其扩展到对扩展固体过渡金属氟化物和一系列复杂的锂钒磷酸盐的g张量的详细研究。最后,计算了LiV(PO)的锂pNMR化学位移,对此有详细的实验数据。这使得能够深入研究不同的方法(例如,g张量的全周期计算与增量簇计算,以及超精细计算的不同泛函和基组),并对pNMR化学位移的不同贡献进行全面分析。这项研究为顺磁材料的NMR化学位移更广泛的计算处理铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验