Suppr超能文献

将基因动力学与血管增生相联系——迈向静脉移植物适应性的预测模型。

Linking gene dynamics to vascular hyperplasia - Toward a predictive model of vein graft adaptation.

作者信息

Casarin Stefano, Berceli Scott A, Garbey Marc

机构信息

LASIE UMR 7356 CNRS, University of La Rochelle, La Rochelle, France.

Houston Methodist Hospital Research Institute, Houston, Texas, United States of America.

出版信息

PLoS One. 2017 Nov 30;12(11):e0187606. doi: 10.1371/journal.pone.0187606. eCollection 2017.

Abstract

Reductionist approaches, where individual pieces of a process are examined in isolation, have been the mainstay of biomedical research. While these methods are effective in highly compartmentalized systems, they fail to account for the inherent plasticity and non-linearity within the signaling structure. In the current manuscript, we present the computational architecture for tracking an acute perturbation in a biologic system through a multiscale model that links gene dynamics to cell kinetics, with the overall goal of predicting tissue adaptation. Given the complexity of the genome, the problem is made tractable by clustering temporal changes in gene expression into unique patterns. These cluster elements form the core of an integrated network that serves as the driving force for the response of the biologic system. This modeling approach is illustrated using the clinical scenario of vein bypass graft adaptation. Vein segments placed in the arterial circulation for treatment of advanced occlusive disease can develop an aggressive hyperplastic response that narrows the lumen, reduces blood flow, and induces in situ thrombosis. Reducing this hyperplastic response has been a long-standing but unrealized goal of biologic researchers in the field. With repeated failures of single target therapies, the redundant response pathways are thought to be a fundamental issue preventing progress towards a solution. Using the current framework, we demonstrate how theoretical genomic manipulations can be introduced into the system to shift the adaptation to a more beneficial phenotype, where the hyperplastic response is mitigated and the risk of thrombosis reduced. Utilizing our previously published rabbit vein graft genomic data, where grafts were harvested at time points ranging from 2 hours to 28 days and under differential flow conditions, and a customized clustering algorithm, five gene clusters that differentiated the low flow (i.e., pro-hyperplastic) from high flow (i.e., anti-hyperplastic) response were identified. The current analysis advances these general associations to create a model that identifies those genes sets most likely to be of therapeutic benefit. Using this approach, we examine the range of potential opportunities for intervention via gene cluster over-expression or inhibition, delivered in isolation or combination, at the time of vein graft implantation.

摘要

还原论方法,即孤立地研究一个过程的各个部分,一直是生物医学研究的支柱。虽然这些方法在高度分隔的系统中是有效的,但它们无法解释信号结构中固有的可塑性和非线性。在当前的手稿中,我们提出了一种计算架构,通过一个将基因动力学与细胞动力学联系起来的多尺度模型来跟踪生物系统中的急性扰动,其总体目标是预测组织适应性。鉴于基因组的复杂性,通过将基因表达的时间变化聚类为独特的模式,使这个问题变得易于处理。这些聚类元素构成了一个整合网络的核心,该网络是生物系统反应的驱动力。使用静脉搭桥移植适应性的临床场景来说明这种建模方法。置于动脉循环中用于治疗晚期闭塞性疾病的静脉段会产生侵袭性增生反应,使管腔变窄、血流减少并诱发原位血栓形成。减少这种增生反应一直是该领域生物研究人员长期以来未实现的目标。由于单一靶点疗法屡屡失败,冗余的反应途径被认为是阻碍解决方案取得进展的一个基本问题。使用当前的框架,我们展示了如何将理论上的基因组操作引入系统,以将适应性转变为更有益的表型,其中增生反应得到缓解,血栓形成风险降低。利用我们之前发表的兔静脉移植基因组数据,其中移植组织在2小时至28天的时间点以及不同血流条件下采集,以及一种定制的聚类算法,确定了五个区分低血流(即促增生)和高血流(即抗增生)反应的基因簇。当前的分析推进了这些一般关联,以创建一个识别最有可能具有治疗益处的基因集的模型。使用这种方法,我们研究了在静脉移植植入时通过单独或联合递送的基因簇过表达或抑制进行干预的潜在机会范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c6/5708843/3d05c90863c1/pone.0187606.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验