Suppr超能文献

基于出租车轨迹的区域功能进行人类移动性预测。

Human mobility prediction from region functions with taxi trajectories.

作者信息

Wang Minjie, Yang Su, Sun Yi, Gao Jun

机构信息

Shanghai Key Laboratory of Intelligent Information Processing, College of Computer Science, Fudan University, Shanghai, China.

出版信息

PLoS One. 2017 Nov 30;12(11):e0188735. doi: 10.1371/journal.pone.0188735. eCollection 2017.

Abstract

People in cities nowadays suffer from increasingly severe traffic jams due to less awareness of how collective human mobility is affected by urban planning. Besides, understanding how region functions shape human mobility is critical for business planning but remains unsolved so far. This study aims to discover the association between region functions and resulting human mobility. We establish a linear regression model to predict the traffic flows of Beijing based on the input referred to as bag of POIs. By solving the predictor in the sense of sparse representation, we find that the average prediction precision is over 74% and each type of POI contributes differently in the predictor, which accounts for what factors and how such region functions attract people visiting. Based on these findings, predictive human mobility could be taken into account when planning new regions and region functions.

摘要

如今,城市中的人们因对城市规划如何影响人类集体出行的认识不足,正遭受着日益严重的交通拥堵。此外,了解区域功能如何塑造人类出行对于商业规划至关重要,但迄今为止仍未得到解决。本研究旨在发现区域功能与由此产生的人类出行之间的关联。我们建立了一个线性回归模型,基于称为兴趣点包的输入来预测北京的交通流量。通过在稀疏表示的意义上求解预测器,我们发现平均预测精度超过74%,并且每种类型的兴趣点在预测器中的贡献不同,这解释了哪些因素以及区域功能如何吸引人们前往。基于这些发现,在规划新区域和区域功能时可以考虑预测人类出行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc76/5708706/9f58293e0b15/pone.0188735.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验