Suppr超能文献

使用 Kinect™ 3D 点云自动识别后排乘客的头部位置。

Automated recognition of rear seat occupants' head position using Kinect™ 3D point cloud.

机构信息

Center for Injury Research and Prevention at the Children's Hospital of Philadelphia, 3535 Market Street, Suite 1150, Philadelphia, PA, 19104, United States.

Center for Injury Research and Prevention at the Children's Hospital of Philadelphia, 3535 Market Street, Suite 1150, Philadelphia, PA, 19104, United States.

出版信息

J Safety Res. 2017 Dec;63:135-143. doi: 10.1016/j.jsr.2017.10.005. Epub 2017 Oct 18.

Abstract

INTRODUCTION

Child occupant safety in motor-vehicle crashes is evaluated using Anthropomorphic Test Devices (ATD) seated in optimal positions. However, child occupants often assume suboptimal positions during real-world driving trips. Head impact to the seat back has been identified as one important injury causation scenario for seat belt restrained, head-injured children (Bohman et al., 2011). There is therefore a need to understand the interaction of children with the Child Restraint System to optimize protection.

METHOD

Naturalistic driving studies (NDS) will improve understanding of out-of-position (OOP) trends. To quantify OOP positions, an NDS was conducted. Families used a study vehicle for two weeks during their everyday driving trips. The positions of rear-seated child occupants, representing 22 families, were evaluated. The study vehicle - instrumented with data acquisition systems, including Microsoft Kinect™ V1 - recorded rear seat occupants in 1120 driving 26 trips. Three novel analytical methods were used to analyze data. To assess skeletal tracking accuracy, analysts recorded occurrences where Kinect™ exhibited invalid head recognition among a randomly-selected subset (81 trips). Errors included incorrect target detection (e.g., vehicle headrest) or environmental interference (e.g., sunlight). When head data was present, Kinect™ was correct 41% of the time; two other algorithms - filtering for extreme motion, and background subtraction/head-based depth detection are described in this paper and preliminary results are presented. Accuracy estimates were not possible because of their experimental nature and the difficulty to use a ground truth for this large database. This NDS tested methods to quantify the frequency and magnitude of head positions for rear-seated child occupants utilizing Kinect™ motion-tracking.

RESULTS

This study's results informed recent ATD sled tests that replicated observed positions (most common and most extreme), and assessed the validity of child occupant protection on these typical CRS uses.

SUMMARY

Optimal protection in vehicles requires an understanding of how child occupants use the rear seat space. This study explored the feasibility of using Kinect™ to log positions of rear seated child occupants. Initial analysis used the Kinect™ system's skeleton recognition and two novel analytical algorithms to log head location.

PRACTICAL APPLICATIONS

This research will lead to further analysis leveraging Kinect™ raw data - and other NDS data - to quantify the frequency/magnitude of OOP situations, ATD sled tests that replicate observed positions, and advances in the design and testing of child occupant protection technology.

摘要

简介

在汽车碰撞中评估儿童乘客的安全情况时,使用安 全座椅和人体模型测试设备(ATD),并将儿童乘客置于最佳位置。然而,在现实世界的驾驶过程中,儿童乘客往往会采取非最佳位置。头部撞击座椅靠背已被确定为约束式安全带约束下受伤的儿童的一个重要致伤因素(Bohman 等人,2011 年)。因此,需要了解儿童与儿童约束系统的相互作用,以优化保护。

方法

自然驾驶研究(NDS)将提高对非最佳位置(OOP)趋势的理解。为了量化非最佳位置,进行了一项自然驾驶研究。研究对象家庭在两周的时间里使用研究车辆进行日常驾驶。研究评估了 22 个家庭中后排座位儿童乘客的位置。研究车辆配备了数据采集系统,包括 Microsoft Kinect™ V1,记录了 1120 次驾驶 26 次旅行的后排乘客。使用了三种新的分析方法来分析数据。为了评估骨骼跟踪准确性,分析人员在随机选择的子集(81 次旅行)中记录了 Kinect™出现无效头部识别的情况。错误包括目标检测不正确(例如,车辆头枕)或环境干扰(例如,阳光)。当头部数据存在时,Kinect™的准确率为 41%;本文描述了另外两种算法——过滤极端运动和背景减除/基于头部的深度检测,并介绍了初步结果。由于其实验性质以及难以对大型数据库使用真实数据,因此无法进行准确性估计。本 NDS 测试了使用 Kinect™运动跟踪技术量化后排儿童乘客头部位置的频率和幅度的方法。

结果

本研究的结果为最近的 ATD 碰撞测试提供了信息,这些测试复制了观察到的位置(最常见和最极端),并评估了这些典型 CRS 使用情况下对儿童乘客保护的有效性。

总结

在车辆中获得最佳保护需要了解儿童乘客如何使用后排空间。本研究探讨了使用 Kinect™记录后排座位儿童乘客位置的可行性。初始分析使用 Kinect™系统的骨骼识别和两种新的分析算法来记录头部位置。

实际应用

这项研究将进一步利用 Kinect™原始数据和其他 NDS 数据,来量化非最佳位置情况的频率/幅度,复制观察到的位置的 ATD 碰撞测试,以及儿童乘客保护技术的设计和测试的进步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验