Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Biomater Sci. 2017 Dec 19;6(1):216-224. doi: 10.1039/c7bm00722a.
Supramolecular filament hydrogels are an emerging class of biomaterials that hold great promise for regenerative medicine, tissue engineering, and drug delivery. However, fine-tuning of their bulk mechanical properties at the molecular level without altering their network structures remains a significant challenge. Here we report an isomeric strategy to construct amphiphilic peptides through the conjugation of isomeric hydrocarbons to influence the local viscoelastic properties of their resulting supramolecular hydrogels. In this case, the packing requirements of the chosen isomeric hydrocarbons within the supramolecular filaments are dictated by their atomic arrangements at the molecular and intermolecular levels. Atomistic molecular dynamics simulations suggest that this design strategy can subtly alter the molecular packing at the interface between the peptide domain and the hydrophobic core of the supramolecular assemblies, without changing both the filament width and morphology. Our results from wide-angle X-ray scattering and molecular simulations further confirm that alterations to the intermolecular packing at the interface impact the strength and degree of hydrogen bonding within the peptide domains. This subtle difference in the isomeric hydrocarbon design and their consequent packing difference led to variations in the persistence length of the individual supramolecular filaments. Microrheological analysis reveals that this difference in filament stiffness enables the fine-tuning of the mechanical properties of the hydrogel at the macroscopic scale. We believe that this isomeric platform provides an innovative method to tune the local viscoelastic properties of supramolecular polymeric hydrogels without necessarily altering their network structures.
超分子纤维水凝胶是一类新兴的生物材料,在再生医学、组织工程和药物输送方面具有广阔的应用前景。然而,在不改变其网络结构的情况下,在分子水平上精细调节其整体力学性能仍然是一个重大挑战。在这里,我们报告了一种通过将异构烃键接到酰胺上构建两亲肽的异构策略,以影响其所得超分子水凝胶的局部粘弹性。在这种情况下,所选异构烃在超分子纤维内的分子堆积要求由其在分子和分子间水平上的原子排列决定。原子分子动力学模拟表明,这种设计策略可以在不改变纤维宽度和形态的情况下,微妙地改变肽域和超分子组装的疏水区之间界面处的分子堆积。我们的广角 X 射线散射和分子模拟结果进一步证实,界面处的分子间堆积的改变会影响肽域内氢键的强度和程度。这种异构烃设计的细微差异及其随后的堆积差异导致了单个超分子纤维的持久长度的变化。微流变分析表明,这种纤维硬度的差异使得可以在宏观尺度上精细调节水凝胶的力学性能。我们相信,这种异构平台为调节超分子聚合物水凝胶的局部粘弹性提供了一种创新的方法,而无需改变其网络结构。