Suppr超能文献

慢性炎症性疾病中的线粒体功能障碍和损伤相关分子模式 (DAMPs)。

Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases.

机构信息

Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, United States.

出版信息

Mitochondrion. 2018 Jul;41:37-44. doi: 10.1016/j.mito.2017.12.001. Epub 2017 Dec 6.

Abstract

Inflammation represents a comprehensive host response to external stimuli for the purpose of eliminating the offending agent, minimizing injury to host tissues and fostering repair of damaged tissues back to homeostatic levels. In normal physiologic context, inflammatory response culminates with the resolution of infection and tissue damage response. However, in a pathologic context, persistent or inappropriately regulated inflammation occurs that can lead to chronic inflammatory diseases. Recent scientific advances have integrated the role of innate immune response to be an important arm of the inflammatory process. Accordingly, the dysregulation of innate immunity has been increasingly recognized as a driving force of chronic inflammatory diseases. Mitochondria have recently emerged as organelles which govern fundamental cellular functions including cell proliferation or differentiation, cell death, metabolism and cellular signaling that are important in innate immunity and inflammation-mediated diseases. As a natural consequence, mitochondrial dysfunction has been highlighted in a myriad of chronic inflammatory diseases. Moreover, the similarities between mitochondrial and bacterial constituents highlight the intrinsic links in the innate immune mechanisms that control chronic inflammation in diseases where mitochondrial damage associated molecular patterns (DAMPs) have been involved. Here in this review, the role of mitochondria in innate immune responses is discussed and how it pertains to the mitochondrial dysfunction or DAMPs seen in chronic inflammatory diseases is reviewed.

摘要

炎症反应代表了宿主对外界刺激的全面反应,旨在消除致病因子,最大限度地减少宿主组织损伤,并促进受损组织修复至稳态水平。在正常生理情况下,炎症反应随着感染和组织损伤反应的消退而结束。然而,在病理情况下,持续或不适当调节的炎症反应会导致慢性炎症性疾病。最近的科学进展已经将先天免疫反应的作用整合为炎症过程的重要组成部分。因此,先天免疫失调已被越来越多地认为是慢性炎症性疾病的驱动因素。线粒体最近被认为是控制包括细胞增殖或分化、细胞死亡、代谢和细胞信号转导在内的基本细胞功能的细胞器,这些功能在先天免疫和炎症介导的疾病中非常重要。因此,线粒体功能障碍在许多慢性炎症性疾病中都很突出。此外,线粒体和细菌成分之间的相似性突出了先天免疫机制中控制慢性炎症的内在联系,在这些机制中,与线粒体损伤相关的分子模式 (DAMPs) 已被涉及。在这篇综述中,讨论了线粒体在先天免疫反应中的作用,以及它与慢性炎症性疾病中观察到的线粒体功能障碍或 DAMPs 之间的关系。

相似文献

1
Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases.
Mitochondrion. 2018 Jul;41:37-44. doi: 10.1016/j.mito.2017.12.001. Epub 2017 Dec 6.
2
Mitochondrial dysfunction as a trigger of innate immune responses and inflammation.
Toxicology. 2017 Nov 1;391:54-63. doi: 10.1016/j.tox.2017.07.016. Epub 2017 Jul 29.
3
Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases.
Front Immunol. 2018 May 4;9:832. doi: 10.3389/fimmu.2018.00832. eCollection 2018.
4
Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity.
Antioxid Redox Signal. 2022 Mar;36(7-9):441-461. doi: 10.1089/ars.2021.0073.
5
The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases.
Antioxid Redox Signal. 2015 Dec 10;23(17):1329-50. doi: 10.1089/ars.2015.6407. Epub 2015 Aug 17.
6
Fueling Inflamm-Aging through Mitochondrial Dysfunction: Mechanisms and Molecular Targets.
Int J Mol Sci. 2017 Apr 28;18(5):933. doi: 10.3390/ijms18050933.
8
Mitochondrial Damage-Associated Molecular Patterns and Metabolism in the Regulation of Innate Immunity.
J Innate Immun. 2023;15(1):665-679. doi: 10.1159/000533602. Epub 2023 Sep 4.
9
The Role of Mitochondrial Damage-Associated Molecular Patterns in Chronic Neuroinflammation.
Mediators Inflamm. 2019 Apr 1;2019:4050796. doi: 10.1155/2019/4050796. eCollection 2019.
10
Cell Death and Inflammation: The Role of Mitochondria in Health and Disease.
Cells. 2021 Mar 3;10(3):537. doi: 10.3390/cells10030537.

引用本文的文献

2
Targeting the molecular crosstalk between diabetes and lung cancer for therapeutic intervention.
Discov Oncol. 2025 Jul 28;16(1):1427. doi: 10.1007/s12672-025-03264-x.
4
Parkinson's disease: exploring the systemic immune mechanisms through molecular investigations.
Inflammopharmacology. 2025 Jun 23. doi: 10.1007/s10787-025-01816-9.
5
Earthing effects on mitochondrial function: ATP production and ROS generation.
FEBS Open Bio. 2025 Sep;15(9):1459-1470. doi: 10.1002/2211-5463.70062. Epub 2025 Jun 13.
6
Anesthetic Management of a Patient With Acute Necrotizing Encephalopathy Type 1.
Cureus. 2025 Mar 27;17(3):e81291. doi: 10.7759/cureus.81291. eCollection 2025 Mar.
8
Leber's hereditary optic neuropathy and multiple sclerosis: overlap between mitochondrial disease and neuroinflammation.
Front Neurol. 2025 Feb 18;16:1538358. doi: 10.3389/fneur.2025.1538358. eCollection 2025.
9
NEK kinases in cell cycle regulation, DNA damage response, and cancer progression.
Tissue Cell. 2025 Jun;94:102811. doi: 10.1016/j.tice.2025.102811. Epub 2025 Feb 28.
10
CSF Mitochondrial N-Formyl Methionine Peptide as Complementary Diagnostic Tool in Anti-NMDAR Encephalitis and Anti-LGI1 Encephalitis.
Neuropsychiatr Dis Treat. 2024 Dec 27;20:2629-2636. doi: 10.2147/NDT.S482616. eCollection 2024.

本文引用的文献

1
Monocyte-Macrophages and T Cells in Atherosclerosis.
Immunity. 2017 Oct 17;47(4):621-634. doi: 10.1016/j.immuni.2017.09.008.
2
Foundations of Immunometabolism and Implications for Metabolic Health and Disease.
Immunity. 2017 Sep 19;47(3):406-420. doi: 10.1016/j.immuni.2017.08.009.
3
Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases.
Cell Metab. 2018 Jan 9;27(1):22-41. doi: 10.1016/j.cmet.2017.08.002. Epub 2017 Aug 31.
4
Monitoring immune-checkpoint blockade: response evaluation and biomarker development.
Nat Rev Clin Oncol. 2017 Nov;14(11):655-668. doi: 10.1038/nrclinonc.2017.88. Epub 2017 Jun 27.
5
Impaired Mitochondrial Microbicidal Responses in Chronic Obstructive Pulmonary Disease Macrophages.
Am J Respir Crit Care Med. 2017 Oct 1;196(7):845-855. doi: 10.1164/rccm.201608-1714OC.
6
Mitochondrial Mutations in Cardiac Disorders.
Adv Exp Med Biol. 2017;982:81-111. doi: 10.1007/978-3-319-55330-6_5.
7
Mitochondrial Bioenergetics and Dysfunction in Failing Heart.
Adv Exp Med Biol. 2017;982:65-80. doi: 10.1007/978-3-319-55330-6_4.
8
Innate Immune Function of Mitochondrial Metabolism.
Front Immunol. 2017 May 8;8:527. doi: 10.3389/fimmu.2017.00527. eCollection 2017.
9
Should We Stop Saying 'Glia' and 'Neuroinflammation'?
Trends Mol Med. 2017 Jun;23(6):486-500. doi: 10.1016/j.molmed.2017.04.005. Epub 2017 May 9.
10
Mitochondria-Derived Damage-Associated Molecular Patterns in Neurodegeneration.
Front Immunol. 2017 Apr 26;8:508. doi: 10.3389/fimmu.2017.00508. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验