Suppr超能文献

发育与疾病动物模型中的弹性纤维与大动脉力学

Elastic Fibers and Large Artery Mechanics in Animal Models of Development and Disease.

作者信息

Gabriela Espinosa Maria, Catalin Staiculescu Marius, Kim Jungsil, Marin Eric, Wagenseil Jessica E

机构信息

Department of Biomedical Engineering, Washington University, St. Louis, MO 63130.

Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130.

出版信息

J Biomech Eng. 2018 Feb 1;140(2):0208031-02080313. doi: 10.1115/1.4038704.

Abstract

Development of a closed circulatory system requires that large arteries adapt to the mechanical demands of high, pulsatile pressure. Elastin and collagen uniquely address these design criteria in the low and high stress regimes, resulting in a nonlinear mechanical response. Elastin is the core component of elastic fibers, which provide the artery wall with energy storage and recoil. The integrity of the elastic fiber network is affected by component insufficiency or disorganization, leading to an array of vascular pathologies and compromised mechanical behavior. In this review, we discuss how elastic fibers are formed and how they adapt in development and disease. We discuss elastic fiber contributions to arterial mechanical behavior and remodeling. We primarily present data from mouse models with elastic fiber deficiencies, but suggest that alternate small animal models may have unique experimental advantages and the potential to provide new insights. Advanced ultrastructural and biomechanical data are constantly being used to update computational models of arterial mechanics. We discuss the progression from early phenomenological models to microstructurally motivated strain energy functions for both collagen and elastic fiber networks. Although many current models individually account for arterial adaptation, complex geometries, and fluid-solid interactions (FSIs), future models will need to include an even greater number of factors and interactions in the complex system. Among these factors, we identify the need to revisit the role of time dependence and axial growth and remodeling in large artery mechanics, especially in cardiovascular diseases that affect the mechanical integrity of the elastic fibers.

摘要

封闭循环系统的发育要求大动脉适应高脉动压力的机械需求。弹性蛋白和胶原蛋白分别在低应力和高应力状态下满足这些设计标准,从而产生非线性力学响应。弹性蛋白是弹性纤维的核心成分,为动脉壁提供能量储存和回缩功能。弹性纤维网络的完整性受其成分不足或紊乱的影响,会导致一系列血管病变和力学行为受损。在本综述中,我们讨论弹性纤维如何形成以及它们在发育和疾病过程中如何适应。我们探讨弹性纤维对动脉力学行为和重塑的作用。我们主要展示来自弹性纤维缺陷小鼠模型的数据,但也指出其他小型动物模型可能具有独特的实验优势,并有可能提供新的见解。先进的超微结构和生物力学数据不断被用于更新动脉力学的计算模型。我们讨论从早期现象学模型到基于微观结构的胶原蛋白和弹性纤维网络应变能函数的发展过程。尽管当前许多模型分别考虑了动脉适应、复杂几何形状和流固相互作用(FSI),但未来的模型将需要在这个复杂系统中纳入更多的因素和相互作用。在这些因素中,我们认为有必要重新审视时间依赖性以及轴向生长和重塑在大动脉力学中的作用,特别是在影响弹性纤维力学完整性的心血管疾病中。

相似文献

1
Elastic Fibers and Large Artery Mechanics in Animal Models of Development and Disease.
J Biomech Eng. 2018 Feb 1;140(2):0208031-02080313. doi: 10.1115/1.4038704.
2
Critical buckling pressure in mouse carotid arteries with altered elastic fibers.
J Mech Behav Biomed Mater. 2015 Jun;46:69-82. doi: 10.1016/j.jmbbm.2015.02.013. Epub 2015 Feb 28.
3
Dysfunction in elastic fiber formation in fibulin-5 null mice abrogates the evolution in mechanical response of carotid arteries during maturation.
Am J Physiol Heart Circ Physiol. 2013 Mar 1;304(5):H674-86. doi: 10.1152/ajpheart.00459.2012. Epub 2012 Dec 15.
4
Age-associated proinflammatory elastic fiber remodeling in large arteries.
Mech Ageing Dev. 2021 Jun;196:111490. doi: 10.1016/j.mad.2021.111490. Epub 2021 Apr 8.
5
6
Elastin, arterial mechanics, and cardiovascular disease.
Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H189-H205. doi: 10.1152/ajpheart.00087.2018. Epub 2018 Apr 6.
7
Elastin in large artery stiffness and hypertension.
J Cardiovasc Transl Res. 2012 Jun;5(3):264-73. doi: 10.1007/s12265-012-9349-8.
9
Bio-Chemo-Mechanical Models of Vascular Mechanics.
Ann Biomed Eng. 2015 Jul;43(7):1477-87. doi: 10.1007/s10439-014-1201-7. Epub 2014 Dec 3.

引用本文的文献

1
Sexual dimorphism in the downregulation of extracellular matrix genes contributes to aortic stiffness in female mice.
Am J Physiol Heart Circ Physiol. 2025 Mar 1;328(3):H472-H483. doi: 10.1152/ajpheart.00432.2024. Epub 2025 Jan 28.
2
Vascular Extracellular Matrix in Atherosclerosis.
Int J Mol Sci. 2024 Nov 8;25(22):12017. doi: 10.3390/ijms252212017.
4
Mechanical Properties and Functions of Elastin: An Overview.
Biomolecules. 2023 Mar 22;13(3):574. doi: 10.3390/biom13030574.
5
Biomechanical Properties of the Aortic Wall: Changes during Vascular Calcification.
Biomedicines. 2023 Jan 14;11(1):211. doi: 10.3390/biomedicines11010211.
6
Decellularization of Porcine Carotid Arteries: From the Vessel to the High-Quality Scaffold in Five Hours.
Front Bioeng Biotechnol. 2022 May 16;10:833244. doi: 10.3389/fbioe.2022.833244. eCollection 2022.
8
Zebrafish as a Model to Study Vascular Elastic Fibers and Associated Pathologies.
Int J Mol Sci. 2022 Feb 14;23(4):2102. doi: 10.3390/ijms23042102.
9
Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling.
Int J Mol Sci. 2021 Jul 6;22(14):7284. doi: 10.3390/ijms22147284.
10
Pentagalloyl glucose (PGG) partially prevents arterial mechanical changes due to elastin degradation.
Exp Mech. 2021 Jan;61(1):41-51. doi: 10.1007/s11340-020-00625-1. Epub 2020 Jul 15.

本文引用的文献

1
Crosslinked elastic fibers are necessary for low energy loss in the ascending aorta.
J Biomech. 2017 Aug 16;61:199-207. doi: 10.1016/j.jbiomech.2017.07.011. Epub 2017 Jul 25.
2
Mechanical behavior and matrisome gene expression in the aneurysm-prone thoracic aorta of newborn lysyl oxidase knockout mice.
Am J Physiol Heart Circ Physiol. 2017 Aug 1;313(2):H446-H456. doi: 10.1152/ajpheart.00712.2016. Epub 2017 May 26.
3
Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries.
Sci Adv. 2017 May 3;3(5):e1602532. doi: 10.1126/sciadv.1602532. eCollection 2017 May.
5
Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.
Acta Biomater. 2017 Apr 1;52:49-59. doi: 10.1016/j.actbio.2017.01.083. Epub 2017 Feb 3.
6
Loss of Elastic Fiber Integrity Compromises Common Carotid Artery Function: Implications for Vascular Aging.
Artery Res. 2016 Jun;14:41-52. doi: 10.1016/j.artres.2016.04.001. Epub 2016 Apr 22.
7
An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology.
J Mech Behav Biomed Mater. 2016 Sep;62:139-157. doi: 10.1016/j.jmbbm.2016.04.032. Epub 2016 May 11.
8
A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth.
PLoS One. 2016 Apr 14;11(4):e0152806. doi: 10.1371/journal.pone.0152806. eCollection 2016.
9
Hypertension and decreased aortic compliance due to reduced elastin amounts do not increase atherosclerotic plaque accumulation in Ldlr-/- mice.
Atherosclerosis. 2016 Jun;249:22-9. doi: 10.1016/j.atherosclerosis.2016.03.022. Epub 2016 Mar 21.
10
Arterial mechanics considering the structural and mechanical contributions of ECM constituents.
J Biomech. 2016 Aug 16;49(12):2358-65. doi: 10.1016/j.jbiomech.2016.02.027. Epub 2016 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验