Suppr超能文献

治疗诊断一体化二维碳化钽(MXene)。

Theranostic 2D Tantalum Carbide (MXene).

机构信息

State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.

University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.

出版信息

Adv Mater. 2018 Jan;30(4). doi: 10.1002/adma.201703284. Epub 2017 Dec 11.

Abstract

The large-dimensional and rigid ceramic bulks fabricated by high-temperature solid-phase reaction and sintering have never been considered for possibly entering and circulating within the blood vessels for biomedical applications, especially on combating cancer. Here, it is reported for the first time that MAX ceramic biomaterials exhibit unique functionalities for dual-mode photoacoustic/computed tomography imaging and are highly effective for in vivo photothermal ablation of tumors upon being exfoliated into ultrathin nanosheets within atomic thickness (MXene). As a paradigm, 2D ultrathin tantalum carbide nanosheets (Ta C MXenes) with nanosized lateral sizes are successfully synthesized based on a two-step liquid exfoliation strategy of MAX phase Ta AlC by combined hydrofluoric acid (HF) etching and probe sonication. The structural, electronic, and surface characteristics of the as-exfoliated nanosheets are revealed by various characterizations combined with first-principles calculations via density functional theory. Especially, the superior photothermal-conversion performance (efficiency η of 44.7%) and in vitro/in vivo photothermal ablation of tumor by biocompatible soybean phospholipid-modified Ta C nanosheets are systematically revealed and demonstrated. Based on the large family members of MXenes, this work may offer a paradigm that MXenes can achieve the specific biomedical applications (here, theranostic) providing that their compositions and nanostructures are carefully tuned and optimized to meet the strict requirements of biomedicine.

摘要

通过高温固相反应和烧结制备的大尺寸刚性陶瓷体从未被考虑用于可能进入和循环在血管内的生物医学应用,特别是在对抗癌症方面。在这里,首次报道 MAX 陶瓷生物材料表现出独特的双模式光声/计算机断层扫描成像功能,并在体内表现出高效的肿瘤光热消融作用,因为它们在原子厚度(MXene)内被剥离成超薄纳米片。作为范例,基于 MAX 相 TaAlC 的两步液相剥离策略,通过 HF 刻蚀和探针超声联合作用,成功合成了具有纳米级横向尺寸的二维超薄碳化钽纳米片(TaC MXenes)。通过各种特性以及基于密度泛函理论的第一性原理计算揭示了剥离纳米片的结构、电子和表面特性。特别是,通过生物相容性大豆磷脂改性 TaC 纳米片系统地揭示和证明了其优越的光热转换性能(效率η为 44.7%)和体外/体内肿瘤光热消融。基于 MXenes 的大家族成员,这项工作可能提供了一个范例,即只要 MXenes 的组成和纳米结构被仔细调整和优化以满足严格的医学要求,它们就可以实现特定的生物医学应用(这里是治疗)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验