Brain & Behaviour Research Institute, and School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia.
Psychophysiology. 2018 May;55(5):e13042. doi: 10.1111/psyp.13042. Epub 2017 Dec 11.
Principal components analysis (PCA) has long been used to decompose the ERP into components, and these mathematical entities are increasingly accepted as meaningful and useful representatives of the electrophysiological components constituting the ERP. A similar expansion appears to be beginning in regard to decomposition of the EEG amplitude spectrum into frequency components via frequency PCA. However, to date, there has been no exploration of the brain's dynamic EEG-ERP linkages using PCA decomposition to assess components in each measure. Here, we recorded intrinsic EEG in both eyes-closed and eyes-open resting conditions, followed by an equiprobable go/no-go task. Frequency PCA of the EEG, including the nontask resting and within-task prestimulus periods, found seven frequency components within the delta to beta range. These differentially predicted PCA-derived go and no-go N1 and P3 ERP components. This demonstration suggests that it may be beneficial in future brain dynamics studies to implement PCA for the derivation of data-driven components from both the ERP and EEG.
主成分分析(PCA)长期以来一直用于将 ERP 分解为成分,这些数学实体越来越被认为是构成 ERP 的电生理成分的有意义和有用的代表。类似的扩展似乎也开始出现在通过频率 PCA 将 EEG 幅度谱分解为频率成分方面。然而,迄今为止,还没有使用 PCA 分解来评估每种测量中的成分,以探索大脑的动态 EEG-ERP 联系。在这里,我们记录了闭眼和睁眼休息状态下的内在 EEG,然后进行等概率的 Go/No-Go 任务。包括非任务休息和任务前刺激期在内的 EEG 频率 PCA 发现 delta 到 beta 范围内有七个频率成分。这些成分差异预测了 PCA 衍生的 Go 和 No-Go N1 和 P3 ERP 成分。这一演示表明,在未来的大脑动力学研究中,从 ERP 和 EEG 中推导数据驱动成分时,实施 PCA 可能会有所裨益。