Suppr超能文献

抑制活性氧积累解释了细菌在高浓度喹诺酮类药物时的反常存活现象。

Suppression of Reactive Oxygen Species Accumulation Accounts for Paradoxical Bacterial Survival at High Quinolone Concentration.

机构信息

Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, New Jersey, USA.

Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, New Jersey, USA.

出版信息

Antimicrob Agents Chemother. 2018 Feb 23;62(3). doi: 10.1128/AAC.01622-17. Print 2018 Mar.

Abstract

When bacterial cells are exposed to increasing concentrations of quinolone-class antibacterials, survival drops, reaches a minimum, and then recovers, sometimes to 100%. Despite decades of study, events underlying this paradoxical high-concentration survival remain obscure. Since reactive oxygen species (ROS) have been implicated in antimicrobial lethality, conditions generating paradoxical survival were examined for diminished ROS accumulation. cultures were treated with various concentrations of nalidixic acid, followed by measurements of survival, rate of protein synthesis, and ROS accumulation. The last measurement used a dye (carboxy-H2DCFDA) that fluoresces in the presence of ROS; fluorescence was assessed by microscopy (individual cells) and flow cytometry (batch cultures). High, nonlethal concentrations of nalidixic acid induced lower levels of ROS than moderate, lethal concentrations. Sublethal doses of exogenous hydrogen peroxide became lethal and eliminated the nalidixic acid-associated paradoxical survival. Thus, quinolone-mediated lesions needed for ROS-executed killing persist at high, nonlethal quinolone concentrations, thereby implicating ROS as a key factor in cell death. Chloramphenicol suppressed nalidixic acid-induced ROS accumulation and blocked lethality, further supporting a role for ROS in killing. Nalidixic acid also inhibited protein synthesis, with extensive inhibition at high concentrations correlating with lower ROS accumulation and paradoxical survival. A catalase deficiency, which elevated ROS levels, overcame the inhibitory effect of chloramphenicol on nalidixic acid-mediated killing, emphasizing the importance of ROS. The data collectively indicate that ROS play a dominant role in the lethal action of narrow-spectrum quinolone-class compounds; a drop in ROS levels accounted for the quinolone tolerance observed at very high concentrations.

摘要

当细菌细胞暴露于不断增加的喹诺酮类抗菌药物浓度时,其存活率会下降,达到最低点,然后恢复,有时甚至恢复到 100%。尽管已经研究了几十年,但导致这种矛盾的高浓度存活的事件仍然不清楚。由于活性氧物种(ROS)已被牵连到抗菌致死作用中,因此研究了产生矛盾存活的条件,以减少 ROS 的积累。将培养物用各种浓度的萘啶酸处理,然后测量存活率、蛋白质合成率和 ROS 积累。最后一个测量使用了一种在 ROS 存在下发出荧光的染料(羧基-H2DCFDA);通过显微镜(单个细胞)和流式细胞术(批量培养物)评估荧光。高浓度的非致死性萘啶酸诱导的 ROS 水平低于中等浓度的致死性萘啶酸。亚致死剂量的外源性过氧化氢变得致命,并消除了与萘啶酸相关的矛盾存活。因此,ROS 执行杀伤所需的喹诺酮介导的损伤在高浓度非致死性喹诺酮浓度下持续存在,从而暗示 ROS 是细胞死亡的关键因素。氯霉素抑制了萘啶酸诱导的 ROS 积累并阻止了致死性,进一步支持了 ROS 在杀伤中的作用。萘啶酸还抑制了蛋白质合成,高浓度时广泛抑制与较低的 ROS 积累和矛盾存活相关。过氧化氢酶缺乏症会增加 ROS 水平,克服了氯霉素对萘啶酸介导的杀伤的抑制作用,强调了 ROS 的重要性。这些数据共同表明,ROS 在窄谱喹诺酮类化合物的致死作用中起主导作用;ROS 水平的下降解释了在非常高浓度下观察到的喹诺酮类药物耐受现象。

相似文献

1
Suppression of Reactive Oxygen Species Accumulation Accounts for Paradoxical Bacterial Survival at High Quinolone Concentration.
Antimicrob Agents Chemother. 2018 Feb 23;62(3). doi: 10.1128/AAC.01622-17. Print 2018 Mar.
2
Reactive oxygen species play a dominant role in all pathways of rapid quinolone-mediated killing.
J Antimicrob Chemother. 2020 Mar 1;75(3):576-585. doi: 10.1093/jac/dkz485.
3
Effect of anaerobic growth on quinolone lethality with Escherichia coli.
Antimicrob Agents Chemother. 2007 Jan;51(1):28-34. doi: 10.1128/AAC.00739-06. Epub 2006 Oct 16.
4
Lon protease is essential for paradoxical survival of Escherichia coli exposed to high concentrations of quinolone.
Antimicrob Agents Chemother. 2009 Jul;53(7):3103-5. doi: 10.1128/AAC.00019-09. Epub 2009 May 4.
5
Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death.
J Antimicrob Chemother. 2010 Mar;65(3):520-4. doi: 10.1093/jac/dkp486. Epub 2010 Jan 12.
7
The role of Escherichia coli YrbB in the lethal action of quinolones.
J Antimicrob Chemother. 2011 Feb;66(2):323-31. doi: 10.1093/jac/dkq427. Epub 2010 Nov 23.
8
Synthesis, primary photophysical and antibacterial properties of naphthyl ester cinoxacin and nalidixic acid derivatives.
J Photochem Photobiol B. 2008 Aug 21;92(2):83-90. doi: 10.1016/j.jphotobiol.2008.05.001. Epub 2008 May 13.
9
Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones.
Mol Microbiol. 2006 Aug;61(3):810-25. doi: 10.1111/j.1365-2958.2006.05275.x. Epub 2006 Jun 27.
10
Post-stress bacterial cell death mediated by reactive oxygen species.
Proc Natl Acad Sci U S A. 2019 May 14;116(20):10064-10071. doi: 10.1073/pnas.1901730116. Epub 2019 Apr 4.

引用本文的文献

1
Vitamin D Deficiency and Its Role in Pathologies of Oxidative Stress: A Literature Review.
Cureus. 2025 Aug 13;17(8):e90042. doi: 10.7759/cureus.90042. eCollection 2025 Aug.
2
Fast evolution of SOS-independent multi-drug resistance in bacteria.
Elife. 2025 Jul 9;13:RP95058. doi: 10.7554/eLife.95058.
3
Antibiotic-persistent bacterial cells exhibiting low-level ROS are eradicated by ROS-independent membrane disruption.
mBio. 2025 Aug 13;16(8):e0119925. doi: 10.1128/mbio.01199-25. Epub 2025 Jun 30.
5
Ebselen: A Promising Repurposing Drug to Treat Infections Caused by Multidrug-Resistant Microorganisms.
Interdiscip Perspect Infect Dis. 2024 Mar 30;2024:9109041. doi: 10.1155/2024/9109041. eCollection 2024.
6
Metabolic dormancy in treated with different antibiotics.
Infect Immun. 2024 Feb 13;92(2):e0033923. doi: 10.1128/iai.00339-23. Epub 2024 Jan 12.
8
Prophage Gifsy-1 Induction in Salmonella enterica Serovar Typhimurium Reduces Persister Cell Formation after Ciprofloxacin Exposure.
Microbiol Spectr. 2023 Aug 17;11(4):e0187423. doi: 10.1128/spectrum.01874-23. Epub 2023 Jun 12.
9
Molecular Signatures of the Eagle Effect Induced by the Artificial Siderophore Conjugate LP-600 in .
ACS Infect Dis. 2023 Mar 10;9(3):567-581. doi: 10.1021/acsinfecdis.2c00567. Epub 2023 Feb 10.

本文引用的文献

1
Contribution of reactive oxygen species to thymineless death in Escherichia coli.
Nat Microbiol. 2017 Dec;2(12):1667-1675. doi: 10.1038/s41564-017-0037-y. Epub 2017 Oct 2.
2
Thiophene antibacterials that allosterically stabilize DNA-cleavage complexes with DNA gyrase.
Proc Natl Acad Sci U S A. 2017 May 30;114(22):E4492-E4500. doi: 10.1073/pnas.1700721114. Epub 2017 May 15.
4
Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants.
PLoS One. 2016 Apr 5;11(4):e0153023. doi: 10.1371/journal.pone.0153023. eCollection 2016.
5
Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones.
Nucleic Acids Res. 2016 Apr 20;44(7):3304-16. doi: 10.1093/nar/gkw161. Epub 2016 Mar 16.
6
Antibiotic efficacy is linked to bacterial cellular respiration.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8173-80. doi: 10.1073/pnas.1509743112. Epub 2015 Jun 22.
7
Diagnosing oxidative stress in bacteria: not as easy as you might think.
Curr Opin Microbiol. 2015 Apr;24:124-31. doi: 10.1016/j.mib.2015.01.004. Epub 2015 Feb 6.
9
Ribosomal elongation factor 4 promotes cell death associated with lethal stress.
mBio. 2014 Dec 9;5(6):e01708. doi: 10.1128/mBio.01708-14.
10
Moving forward with reactive oxygen species involvement in antimicrobial lethality.
J Antimicrob Chemother. 2015 Mar;70(3):639-42. doi: 10.1093/jac/dku463. Epub 2014 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验