Suppr超能文献

相似文献

1
Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13619-13624. doi: 10.1073/pnas.1713907114. Epub 2017 Dec 11.
2
Toward a Quantitative Understanding of the Reduction Pathways of a Salt Precursor in the Synthesis of Metal Nanocrystals.
Nano Lett. 2017 Jan 11;17(1):334-340. doi: 10.1021/acs.nanolett.6b04151. Epub 2016 Dec 16.
3
Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals.
Nano Lett. 2015 Feb 11;15(2):1445-50. doi: 10.1021/acs.nanolett.5b00158. Epub 2015 Jan 30.
4
Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.
J Am Chem Soc. 2015 Jul 1;137(25):7947-66. doi: 10.1021/jacs.5b04641. Epub 2015 Jun 9.
5
Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction.
Acc Chem Res. 2015 Oct 20;48(10):2688-95. doi: 10.1021/acs.accounts.5b00300. Epub 2015 Sep 4.
6
Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
Acc Chem Res. 2013 Aug 20;46(8):1783-94. doi: 10.1021/ar300209w. Epub 2012 Nov 19.
8
Synthesis of Palladium Nanoscale Octahedra through a One-Pot, Dual-Reductant Route and Kinetic Analysis.
Chemistry. 2018 Apr 20;24(23):6133-6139. doi: 10.1002/chem.201705720. Epub 2018 Mar 25.
9
Quantitative Analysis of Different Formation Modes of Platinum Nanocrystals Controlled by Ligand Chemistry.
Nano Lett. 2017 Oct 11;17(10):6146-6150. doi: 10.1021/acs.nanolett.7b02751. Epub 2017 Sep 11.
10
Shape-Controlled Synthesis of Colloidal Metal Nanocrystals by Replicating the Surface Atomic Structure on the Seed.
Adv Mater. 2018 Jun;30(25):e1706312. doi: 10.1002/adma.201706312. Epub 2018 Apr 14.

引用本文的文献

1
Using Electrochemistry to Benchmark, Understand, and Develop Noble Metal Nanoparticle Syntheses.
ACS Nanosci Au. 2025 Jul 18;5(4):240-261. doi: 10.1021/acsnanoscienceau.5c00051. eCollection 2025 Aug 20.
2
Seeing Is Believing: How Does the Surface of Silver Nanocubes Change during Their Growth in an Aqueous System.
Nano Lett. 2025 Apr 30;25(17):7115-7120. doi: 10.1021/acs.nanolett.5c01276. Epub 2025 Apr 21.
3
5
Utilizing cost-effective pyrocarbon for highly efficient gold retrieval from e-waste leachate.
Nat Commun. 2024 Jul 20;15(1):6137. doi: 10.1038/s41467-024-50595-4.
6
Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry.
Chem Rev. 2024 Jul 24;124(14):8597-8619. doi: 10.1021/acs.chemrev.4c00165. Epub 2024 Jun 3.
7
Elucidating the Role of Reduction Kinetics in the Phase-Controlled Growth on Preformed Nanocrystal Seeds: A Case Study of Ru.
J Am Chem Soc. 2024 May 1;146(17):12040-12052. doi: 10.1021/jacs.4c01725. Epub 2024 Mar 30.
8
Tunable Single-Photon Emission with Wafer-Scale Plasmonic Array.
Nano Lett. 2024 Mar 20;24(11):3395-3403. doi: 10.1021/acs.nanolett.3c05155. Epub 2024 Feb 15.
9
Deterministic Synthesis of Pd Nanocrystals Enclosed by High-Index Facets and Their Enhanced Activity toward Formic Acid Oxidation.
Precis Chem. 2023 Jul 24;1(6):372-381. doi: 10.1021/prechem.3c00060. eCollection 2023 Aug 28.
10
Toward controllable and predictable synthesis of high-entropy alloy nanocrystals.
Sci Adv. 2023 May 10;9(19):eadf9931. doi: 10.1126/sciadv.adf9931.

本文引用的文献

1
Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals.
Chem Sci. 2015 Sep 1;6(9):5197-5203. doi: 10.1039/c5sc01787d. Epub 2015 Jun 18.
2
Quantitative Analysis of Different Formation Modes of Platinum Nanocrystals Controlled by Ligand Chemistry.
Nano Lett. 2017 Oct 11;17(10):6146-6150. doi: 10.1021/acs.nanolett.7b02751. Epub 2017 Sep 11.
3
Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra.
Nano Lett. 2017 Jun 14;17(6):3655-3661. doi: 10.1021/acs.nanolett.7b00844. Epub 2017 May 2.
4
Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.
Acc Chem Res. 2016 Dec 20;49(12):2841-2850. doi: 10.1021/acs.accounts.6b00527. Epub 2016 Dec 8.
5
Seed-Mediated Growth of Colloidal Metal Nanocrystals.
Angew Chem Int Ed Engl. 2017 Jan 2;56(1):60-95. doi: 10.1002/anie.201604731. Epub 2016 Dec 14.
6
Toward a Quantitative Understanding of the Reduction Pathways of a Salt Precursor in the Synthesis of Metal Nanocrystals.
Nano Lett. 2017 Jan 11;17(1):334-340. doi: 10.1021/acs.nanolett.6b04151. Epub 2016 Dec 16.
7
Submonolayered Ru Deposited on Ultrathin Pd Nanosheets used for Enhanced Catalytic Applications.
Adv Mater. 2016 Dec;28(46):10282-10286. doi: 10.1002/adma.201604829. Epub 2016 Nov 8.
8
Revealing the Formation of Copper Nanoparticles from a Homogeneous Solid Precursor by Electron Microscopy.
J Am Chem Soc. 2016 Mar 16;138(10):3433-42. doi: 10.1021/jacs.5b12800. Epub 2016 Mar 4.
9
Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.
Nano Lett. 2016 Jan 13;16(1):715-20. doi: 10.1021/acs.nanolett.5b04541. Epub 2015 Dec 2.
10
Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.
J Am Chem Soc. 2015 Jul 1;137(25):7947-66. doi: 10.1021/jacs.5b04641. Epub 2015 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验