Purcar Violeta, Şomoghi Raluca, Niţu Sabina Georgiana, Nicolae Cristian-Andi, Alexandrescu Elvira, Gîfu Ioana Cătălina, Gabor Augusta Raluca, Stroescu Hermine, Ianchiş Raluca, Căprărescu Simona, Cinteză Ludmila Otilia
R&D National Institute for Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 6th District, 060021 Bucharest, Romania.
Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, 202 Spl. Independentei, 6th District, 060021 Bucharest, Romania.
Nanomaterials (Basel). 2017 Dec 12;7(12):439. doi: 10.3390/nano7120439.
Hybrid nanomaterials based on zinc oxide were synthesized via the sol-gel method, using different silane coupling agents: (3-glycidyloxypropyl)trimethoxysilane (GPTMS), phenyltriethoxysilane (PhTES), octyltriethoxysilane (OTES), and octadecyltriethoxysilane (ODTES). Morphological properties and the silane precursor type effect on the particle size were investigated using dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The bonding characteristics of modified ZnO materials were investigated using Fourier transform infrared spectroscopy (FTIR). The final solutions were deposited on metallic substrate (aluminum) in order to realize coatings with various wettability and roughness. The morphological studies, obtained by ESEM and TEM analysis, showed that the sizes of the ZnO nanoparticles are changed as function of silane precursor used in synthesis. The thermal stability of modified ZnO materials showed that the degradation of the alkyl groups takes place in the 300-500 °C range. Water wettability study revealed a contact angle of 142 ± 5° for the surface covered with ZnO material modified with ODTES and showed that the water contact angle increases as the alkyl chain from the silica precursor increases. These modified ZnO materials, therefore, can be easily incorporated in coatings for various applications such as anti-corrosion and anti-icing.
基于氧化锌的杂化纳米材料通过溶胶-凝胶法合成,使用了不同的硅烷偶联剂:(3-缩水甘油氧基丙基)三甲氧基硅烷(GPTMS)、苯基三乙氧基硅烷(PhTES)、辛基三乙氧基硅烷(OTES)和十八烷基三乙氧基硅烷(ODTES)。使用动态光散射(DLS)、环境扫描电子显微镜(ESEM)、透射电子显微镜(TEM)、热重分析(TGA)和X射线衍射(XRD)研究了形态学性质以及硅烷前驱体类型对粒径的影响。使用傅里叶变换红外光谱(FTIR)研究了改性氧化锌材料的键合特性。将最终溶液沉积在金属基底(铝)上,以实现具有各种润湿性和粗糙度的涂层。通过ESEM和TEM分析获得的形态学研究表明,氧化锌纳米颗粒的尺寸随合成中使用的硅烷前驱体而变化。改性氧化锌材料的热稳定性表明,烷基的降解发生在300-500°C范围内。水润湿性研究表明,用ODTES改性的氧化锌材料覆盖的表面的接触角为142±5°,并且表明随着二氧化硅前驱体中烷基链的增加,水接触角增大。因此,这些改性氧化锌材料可以很容易地用于各种应用的涂层中,如防腐和防冰涂层。