Suppr超能文献

在糖尿病小鼠模型中,血浆和病变组织中存在共享和独特的脂质-脂质相互作用。

Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model.

机构信息

Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.

Departments of Statistics, University of Michigan, Ann Arbor, MI 48109.

出版信息

J Lipid Res. 2018 Feb;59(2):173-183. doi: 10.1194/jlr.M077222. Epub 2017 Dec 13.

Abstract

Lipids are ubiquitous metabolites with diverse functions; abnormalities in lipid metabolism appear to be related to complications from multiple diseases, including type 2 diabetes. Through technological advances, the entire lipidome has been characterized and researchers now need computational approaches to better understand lipid network perturbations in different diseases. Using a mouse model of type 2 diabetes with microvascular complications, we examined lipid levels in plasma and in renal, neural, and retinal tissues to identify shared and distinct lipid abnormalities. We used correlation analysis to construct interaction networks in each tissue, to associate changes in lipids with changes in enzymes of lipid metabolism, and to identify overlap of coregulated lipid subclasses between plasma and each tissue to define subclasses of plasma lipids to use as surrogates of tissue lipid metabolism. Lipid metabolism alterations were mostly tissue specific in the kidney, nerve, and retina; no lipid changes correlated between the plasma and all three tissue types. However, alterations in diacylglycerol and in lipids containing arachidonic acid, an inflammatory mediator, were shared among the tissue types, and the highly saturated cholesterol esters were similarly coregulated between plasma and each tissue type in the diabetic mouse. Our results identified several patterns of altered lipid metabolism that may help to identify pathogenic alterations in different tissues and could be used as biomarkers in future research into diabetic microvascular tissue damage.

摘要

脂质是具有多种功能的普遍存在的代谢物;脂质代谢异常似乎与多种疾病的并发症有关,包括 2 型糖尿病。通过技术进步,已经对整个脂质组进行了描述,研究人员现在需要计算方法来更好地理解不同疾病中的脂质网络扰动。我们使用伴有微血管并发症的 2 型糖尿病小鼠模型,检查了血浆以及肾脏、神经和视网膜组织中的脂质水平,以确定共同和独特的脂质异常。我们使用相关分析在每种组织中构建相互作用网络,将脂质变化与脂质代谢酶的变化相关联,并确定血浆和每种组织之间核心调节脂质亚类的重叠,以定义可作为组织脂质代谢替代物的血浆脂质亚类。在肾脏、神经和视网膜中,脂质代谢的改变主要是组织特异性的;血浆和所有三种组织类型之间没有脂质变化相关。然而,二酰基甘油和含有炎症介质花生四烯酸的脂质的改变在组织类型中是共同的,并且在糖尿病小鼠中,高度饱和的胆固醇酯在血浆和每种组织类型之间也受到类似的核心调节。我们的结果确定了几种改变的脂质代谢模式,这可能有助于识别不同组织中的致病改变,并可作为未来糖尿病微血管组织损伤研究中的生物标志物。

相似文献

1
Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model.
J Lipid Res. 2018 Feb;59(2):173-183. doi: 10.1194/jlr.M077222. Epub 2017 Dec 13.
2
Comprehensive lipidomic profiling in serum and multiple tissues from a mouse model of diabetes.
Metabolomics. 2020 Oct 16;16(11):115. doi: 10.1007/s11306-020-01732-9.
4
Hypolipidemic activity of 18beta-glycyrrhetinic acid on streptozotocin-induced diabetic rats.
Eur J Pharmacol. 2009 Jun 10;612(1-3):93-7. doi: 10.1016/j.ejphar.2009.04.003. Epub 2009 Apr 8.
6
Effects of dietary fatty acids on lipid metabolism in streptozotocin-induced diabetic rats.
Metabolism. 1999 Apr;48(4):455-60. doi: 10.1016/s0026-0495(99)90103-8.
7
Beneficial effects of aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes.
Clin Exp Pharmacol Physiol. 2006 Mar;33(3):232-7. doi: 10.1111/j.1440-1681.2006.04351.x.
8
Lipid dismetabolism in Leydig and Sertoli cells isolated from streptozotocin-diabetic rats.
Int J Biochem Cell Biol. 1998 Sep;30(9):1001-10. doi: 10.1016/s1357-2725(98)00055-7.
10
Study of the diacylglycerol composition in the liver and serum of mice with prediabetes and diabetes using MeV TOF-SIMS.
Diabetes Res Clin Pract. 2020 Jan;159:107986. doi: 10.1016/j.diabres.2019.107986. Epub 2019 Dec 19.

引用本文的文献

1
Novel Lipid Biomarkers and Microvascular Complications in Patients with Diabetes Mellitus: A Systematic Review and Meta-analysis.
Clin Med Insights Endocrinol Diabetes. 2025 Aug 16;18:11795514251365301. doi: 10.1177/11795514251365301. eCollection 2025.
2
Lipidomics reveals potential biomarkers and pathophysiological insights in the progression of diabetic kidney disease.
Metabol Open. 2025 Mar 3;25:100354. doi: 10.1016/j.metop.2025.100354. eCollection 2025 Mar.
4
Impact of renal tubular overexpression on the kidney metabolome in the folic acid-induced fibrosis mouse model.
Front Mol Biosci. 2023 Jun 12;10:1161036. doi: 10.3389/fmolb.2023.1161036. eCollection 2023.
5
New perspectives in diabetic neuropathy.
Neuron. 2023 Sep 6;111(17):2623-2641. doi: 10.1016/j.neuron.2023.05.003. Epub 2023 May 31.
7
Differential Network Analysis: A Statistical Perspective.
Wiley Interdiscip Rev Comput Stat. 2021 Mar-Apr;13(2). doi: 10.1002/wics.1508. Epub 2020 Apr 6.
10
A High-Fat Diet Disrupts Nerve Lipids and Mitochondrial Function in Murine Models of Neuropathy.
Front Physiol. 2022 Aug 22;13:921942. doi: 10.3389/fphys.2022.921942. eCollection 2022.

本文引用的文献

1
Metabolomic analysis of insulin resistance across different mouse strains and diets.
J Biol Chem. 2017 Nov 24;292(47):19135-19145. doi: 10.1074/jbc.M117.818351. Epub 2017 Oct 5.
2
Lipidomic Signature of Progression of Chronic Kidney Disease in the Chronic Renal Insufficiency Cohort.
Kidney Int Rep. 2016 Nov;1(4):256-268. doi: 10.1016/j.ekir.2016.08.007. Epub 2016 Aug 18.
3
Comparative RNA-Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease.
J Cell Mol Med. 2017 Sep;21(9):2140-2152. doi: 10.1111/jcmm.13136. Epub 2017 Mar 8.
4
Role of lipid-lowering agents in the management of diabetic retinopathy.
World J Diabetes. 2017 Jan 15;8(1):1-6. doi: 10.4239/wjd.v8.i1.1.
5
Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells.
PLoS One. 2016 Oct 11;11(10):e0164665. doi: 10.1371/journal.pone.0164665. eCollection 2016.
6
Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications.
JCI Insight. 2016 Sep 22;1(15):e86976. doi: 10.1172/jci.insight.86976.
7
Lipidomics for studying metabolism.
Nat Rev Endocrinol. 2016 Nov;12(11):668-679. doi: 10.1038/nrendo.2016.98. Epub 2016 Jul 29.
8
De Novo Lipogenesis Products and Endogenous Lipokines.
Diabetes. 2016 Jul;65(7):1800-7. doi: 10.2337/db16-0251. Epub 2016 Jun 10.
10
Transcriptional networks of murine diabetic peripheral neuropathy and nephropathy: common and distinct gene expression patterns.
Diabetologia. 2016 Jun;59(6):1297-306. doi: 10.1007/s00125-016-3913-8. Epub 2016 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验