Suppr超能文献

FEBio中用于计算流体动力学的有限元框架。

Finite Element Framework for Computational Fluid Dynamics in FEBio.

作者信息

Ateshian Gerard A, Shim Jay J, Maas Steve A, Weiss Jeffrey A

机构信息

Department of Mechanical Engineering, Columbia University, New York, NY 10027.

Department of Bioengineering, University of Utah, Salt Lake City, UT 84112.

出版信息

J Biomech Eng. 2018 Feb 1;140(2):0210011-02100117. doi: 10.1115/1.4038716.

Abstract

The mechanics of biological fluids is an important topic in biomechanics, often requiring the use of computational tools to analyze problems with realistic geometries and material properties. This study describes the formulation and implementation of a finite element framework for computational fluid dynamics (CFD) in FEBio, a free software designed to meet the computational needs of the biomechanics and biophysics communities. This formulation models nearly incompressible flow with a compressible isothermal formulation that uses a physically realistic value for the fluid bulk modulus. It employs fluid velocity and dilatation as essential variables: The virtual work integral enforces the balance of linear momentum and the kinematic constraint between fluid velocity and dilatation, while fluid density varies with dilatation as prescribed by the axiom of mass balance. Using this approach, equal-order interpolations may be used for both essential variables over each element, contrary to traditional mixed formulations that must explicitly satisfy the inf-sup condition. The formulation accommodates Newtonian and non-Newtonian viscous responses as well as inviscid fluids. The efficiency of numerical solutions is enhanced using Broyden's quasi-Newton method. The results of finite element simulations were verified using well-documented benchmark problems as well as comparisons with other free and commercial codes. These analyses demonstrated that the novel formulation introduced in FEBio could successfully reproduce the results of other codes. The analogy between this CFD formulation and standard finite element formulations for solid mechanics makes it suitable for future extension to fluid-structure interactions (FSIs).

摘要

生物流体力学是生物力学中的一个重要课题,通常需要使用计算工具来分析具有实际几何形状和材料特性的问题。本研究描述了在FEBio中用于计算流体动力学(CFD)的有限元框架的公式化和实现,FEBio是一款旨在满足生物力学和生物物理学领域计算需求的免费软件。该公式采用可压缩等温公式对几乎不可压缩的流动进行建模,该公式使用了符合物理实际的流体体积模量值。它将流体速度和膨胀率作为基本变量:虚功积分强制线性动量平衡以及流体速度和膨胀率之间的运动学约束,而流体密度根据质量平衡公理随膨胀率变化。使用这种方法,每个单元上的两个基本变量都可以使用等阶插值,这与传统的混合公式不同,传统混合公式必须明确满足下-上条件。该公式适用于牛顿和非牛顿粘性响应以及无粘性流体。使用布罗伊登拟牛顿法提高了数值解的效率。有限元模拟结果通过记录良好的基准问题以及与其他免费和商业代码的比较进行了验证。这些分析表明,FEBio中引入的新公式能够成功重现其他代码的结果。这种CFD公式与固体力学标准有限元公式之间的相似性使其适用于未来扩展到流固相互作用(FSI)。

相似文献

1
Finite Element Framework for Computational Fluid Dynamics in FEBio.
J Biomech Eng. 2018 Feb 1;140(2):0210011-02100117. doi: 10.1115/1.4038716.
2
Finite Element Implementation of Biphasic-Fluid Structure Interactions in febio.
J Biomech Eng. 2021 Sep 1;143(9). doi: 10.1115/1.4050646.
3
A Formulation for Fluid-Structure Interactions in febio Using Mixture Theory.
J Biomech Eng. 2019 May 1;141(5):0510101-05101015. doi: 10.1115/1.4043031.
5
A Plugin Framework for Extending the Simulation Capabilities of FEBio.
Biophys J. 2018 Nov 6;115(9):1630-1637. doi: 10.1016/j.bpj.2018.09.016. Epub 2018 Sep 26.
6
FEBio: History and Advances.
Annu Rev Biomed Eng. 2017 Jun 21;19:279-299. doi: 10.1146/annurev-bioeng-071516-044738.
7
A systematic comparison between FEBio and PolyFEM for biomechanical systems.
Comput Methods Programs Biomed. 2024 Feb;244:107938. doi: 10.1016/j.cmpb.2023.107938. Epub 2023 Nov 29.
8
FEBio: finite elements for biomechanics.
J Biomech Eng. 2012 Jan;134(1):011005. doi: 10.1115/1.4005694.
9
A Hybrid Reactive Multiphasic Mixture With a Compressible Fluid Solvent.
J Biomech Eng. 2022 Jan 1;144(1). doi: 10.1115/1.4051926.

引用本文的文献

3
The effects of leaflet material properties on the simulated function of regurgitant mitral valves.
J Mech Behav Biomed Mater. 2023 Jun;142:105858. doi: 10.1016/j.jmbbm.2023.105858. Epub 2023 Apr 21.
7
Generation and evaluation of input values for computational analysis of transport processes within tissue cultures.
Eng Life Sci. 2022 Feb 23;22(11):681-698. doi: 10.1002/elsc.202100128. eCollection 2022 Nov.
8
Adaptive Wall Shear Stress Imaging in Phantoms, Simulations and In Vivo.
IEEE Trans Biomed Eng. 2023 Jan;70(1):154-165. doi: 10.1109/TBME.2022.3186854. Epub 2022 Dec 26.
10
A Hybrid Biphasic Mixture Formulation for Modeling Dynamics in Porous Deformable Biological Tissues.
Arch Appl Mech. 2022 Feb;92(2):491-511. doi: 10.1007/s00419-020-01851-8. Epub 2021 Jan 7.

本文引用的文献

1
SimVascular: An Open Source Pipeline for Cardiovascular Simulation.
Ann Biomed Eng. 2017 Mar;45(3):525-541. doi: 10.1007/s10439-016-1762-8. Epub 2016 Dec 8.
3
Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure.
Biomech Model Mechanobiol. 2016 Feb;15(1):9-28. doi: 10.1007/s10237-015-0704-y. Epub 2015 Jul 30.
4
Viscoelasticity using reactive constrained solid mixtures.
J Biomech. 2015 Apr 13;48(6):941-7. doi: 10.1016/j.jbiomech.2015.02.019. Epub 2015 Feb 21.
6
Structural analysis of a stented pericardial heart valve with leaflets mounted externally.
Proc Inst Mech Eng H. 2014 Oct;228(10):985-95. doi: 10.1177/0954411914552309. Epub 2014 Sep 23.
7
Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.
Biomech Model Mechanobiol. 2014 Oct;13(5):1105-20. doi: 10.1007/s10237-014-0560-1. Epub 2014 Feb 21.
9
FEBio: finite elements for biomechanics.
J Biomech Eng. 2012 Jan;134(1):011005. doi: 10.1115/1.4005694.
10
Solute transport across a contact interface in deformable porous media.
J Biomech. 2012 Apr 5;45(6):1023-7. doi: 10.1016/j.jbiomech.2012.01.003. Epub 2012 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验