Ateshian Gerard A, Shim Jay J, Maas Steve A, Weiss Jeffrey A
Department of Mechanical Engineering, Columbia University, New York, NY 10027.
Department of Bioengineering, University of Utah, Salt Lake City, UT 84112.
J Biomech Eng. 2018 Feb 1;140(2):0210011-02100117. doi: 10.1115/1.4038716.
The mechanics of biological fluids is an important topic in biomechanics, often requiring the use of computational tools to analyze problems with realistic geometries and material properties. This study describes the formulation and implementation of a finite element framework for computational fluid dynamics (CFD) in FEBio, a free software designed to meet the computational needs of the biomechanics and biophysics communities. This formulation models nearly incompressible flow with a compressible isothermal formulation that uses a physically realistic value for the fluid bulk modulus. It employs fluid velocity and dilatation as essential variables: The virtual work integral enforces the balance of linear momentum and the kinematic constraint between fluid velocity and dilatation, while fluid density varies with dilatation as prescribed by the axiom of mass balance. Using this approach, equal-order interpolations may be used for both essential variables over each element, contrary to traditional mixed formulations that must explicitly satisfy the inf-sup condition. The formulation accommodates Newtonian and non-Newtonian viscous responses as well as inviscid fluids. The efficiency of numerical solutions is enhanced using Broyden's quasi-Newton method. The results of finite element simulations were verified using well-documented benchmark problems as well as comparisons with other free and commercial codes. These analyses demonstrated that the novel formulation introduced in FEBio could successfully reproduce the results of other codes. The analogy between this CFD formulation and standard finite element formulations for solid mechanics makes it suitable for future extension to fluid-structure interactions (FSIs).
生物流体力学是生物力学中的一个重要课题,通常需要使用计算工具来分析具有实际几何形状和材料特性的问题。本研究描述了在FEBio中用于计算流体动力学(CFD)的有限元框架的公式化和实现,FEBio是一款旨在满足生物力学和生物物理学领域计算需求的免费软件。该公式采用可压缩等温公式对几乎不可压缩的流动进行建模,该公式使用了符合物理实际的流体体积模量值。它将流体速度和膨胀率作为基本变量:虚功积分强制线性动量平衡以及流体速度和膨胀率之间的运动学约束,而流体密度根据质量平衡公理随膨胀率变化。使用这种方法,每个单元上的两个基本变量都可以使用等阶插值,这与传统的混合公式不同,传统混合公式必须明确满足下-上条件。该公式适用于牛顿和非牛顿粘性响应以及无粘性流体。使用布罗伊登拟牛顿法提高了数值解的效率。有限元模拟结果通过记录良好的基准问题以及与其他免费和商业代码的比较进行了验证。这些分析表明,FEBio中引入的新公式能够成功重现其他代码的结果。这种CFD公式与固体力学标准有限元公式之间的相似性使其适用于未来扩展到流固相互作用(FSI)。