Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland.
Laboratori d'Electroquímica de Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
Chemosphere. 2018 Mar;194:812-820. doi: 10.1016/j.chemosphere.2017.12.014. Epub 2017 Dec 5.
Electrochemical oxidation with electrogenerated HO (EO- HO), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar PEF (SPEF) have been applied to mineralize bisphenol A solutions in 0.050 M NaSO or 0.008 M NaCl + 0.047 M NaSO at pH 3.0. The assays were performed in an undivided cell with a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous HO production. The PEF and SPEF processes yielded almost total mineralization due to the potent synergistic action of generated hydroxyl radicals and active chlorine, in conjunction with the photolytic action of UV radiation. The higher intensity of UV rays from sunlight explained the superior oxidation ability of SPEF. The effect of applied current density was studied in all treatments, whereas the role of bisphenol A concentration was examined in PEF. Bisphenol A abatement followed a pseudo-first-order kinetics, which was very quick in SPEF since UV light favored a large production of hydroxyl radicals from Fenton's reaction. Eight non-chlorinated and six chlorinated aromatics were identified as primary products in the chloride matrix. Ketomalonic, tartronic, maleic and oxalic acids were detected as final short-chain aliphatic carboxylic acids. The large stability of Fe(III)-oxalate complexes in EF compared to their fast photomineralization in PEF and PEF accounted for by the superior oxidation power of the latter processes.
电化学氧化法(EO-HO)、电芬顿法(EF)、光电芬顿法(PEF)和太阳能光电芬顿法(SPEF)已被应用于在 pH 3.0 下,在 0.050 M NaSO 或 0.008 M NaCl+0.047 M NaSO 中矿化双酚 A 溶液。在一个带有掺硼金刚石(BDD)阳极和空气扩散阴极的无分隔电池中进行了这些实验,以连续产生 HO。PEF 和 SPEF 工艺由于生成的羟基自由基和活性氯的协同作用,以及 UV 辐射的光解作用,几乎实现了完全的矿化。太阳光的紫外线强度更高,这解释了 SPEF 具有更好的氧化能力。在所有处理中都研究了施加电流密度的影响,而在 PEF 中则研究了双酚 A 浓度的作用。双酚 A 的去除遵循准一级动力学,在 SPEF 中非常迅速,因为紫外线有利于 Fenton 反应产生大量羟基自由基。在氯化物基质中鉴定出八种非氯化和六种氯化芳烃作为主要产物。酮基丙二酸、酒石酸、马来酸和草酸被检测为最终的短链脂肪族羧酸。与 EF 相比,Fe(III)-草酸盐复合物在 PEF 和 SPEF 中的稳定性更高,而后者的氧化能力更强,这解释了其快速光矿化的原因。