Suppr超能文献

推特内容中的昼夜情绪变化。

Circadian mood variations in Twitter content.

作者信息

Dzogang Fabon, Lightman Stafford, Cristianini Nello

机构信息

Intelligent Systems Laboratory, University of Bristol, Bristol, UK.

Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.

出版信息

Brain Neurosci Adv. 2017 Jan 1;1:2398212817744501. doi: 10.1177/2398212817744501. Epub 2017 Dec 1.

Abstract

BACKGROUND

Circadian regulation of sleep, cognition, and metabolic state is driven by a central clock, which is in turn entrained by environmental signals. Understanding the circadian regulation of mood, which is vital for coping with day-to-day needs, requires large datasets and has classically utilised subjective reporting.

METHODS

In this study, we use a massive dataset of over 800 million Twitter messages collected over 4 years in the United Kingdom. We extract robust signals of the changes that happened during the course of the day in the collective expression of emotions and fatigue. We use methods of statistical analysis and Fourier analysis to identify periodic structures, extrema, change-points, and compare the stability of these events across seasons and weekends.

RESULTS

We reveal strong, but different, circadian patterns for positive and negative moods. The cycles of fatigue and anger appear remarkably stable across seasons and weekend/weekday boundaries. Positive mood and sadness interact more in response to these changing conditions. Anger and, to a lower extent, fatigue show a pattern that inversely mirrors the known circadian variation of plasma cortisol concentrations. Most quantities show a strong inflexion in the morning.

CONCLUSION

Since circadian rhythm and sleep disorders have been reported across the whole spectrum of mood disorders, we suggest that analysis of social media could provide a valuable resource to the understanding of mental disorder.

摘要

背景

睡眠、认知和代谢状态的昼夜节律由一个中央时钟驱动,而中央时钟又受环境信号的影响。了解情绪的昼夜节律对满足日常需求至关重要,这需要大量数据集,并且传统上采用主观报告的方式。

方法

在本研究中,我们使用了一个庞大的数据集,该数据集包含在英国4年多时间里收集的超过8亿条推特消息。我们提取了一天中情绪和疲劳的集体表达中发生变化的可靠信号。我们使用统计分析和傅里叶分析方法来识别周期性结构、极值、变化点,并比较这些事件在不同季节和周末的稳定性。

结果

我们揭示了积极情绪和消极情绪强烈但不同的昼夜节律模式。疲劳和愤怒的周期在不同季节以及周末/工作日边界处表现出显著的稳定性。积极情绪和悲伤在应对这些变化的条件时相互作用更强。愤怒以及程度稍低的疲劳呈现出一种与已知的血浆皮质醇浓度昼夜变化相反的模式。大多数指标在早晨有强烈的转折点。

结论

由于在整个情绪障碍谱系中都有昼夜节律和睡眠障碍的报道,我们建议社交媒体分析可为理解精神障碍提供有价值的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f067/7058254/84a60ae82ea6/10.1177_2398212817744501-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验