Suppr超能文献

使用枣椰果提取物制备的银纳米颗粒的生物合成、光学、催化及体外抗菌潜力

Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag-nanoparticles prepared using Palm date fruit extract.

作者信息

Zaheer Zoya

机构信息

Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21413, Saudi Arabia.

出版信息

J Photochem Photobiol B. 2018 Jan;178:584-592. doi: 10.1016/j.jphotobiol.2017.12.002. Epub 2017 Dec 6.

Abstract

Silver nanoparticles (AgNPs) have been synthesized via green route using an aqueous extract of Palm date fruit pericarp extract. The appearance of the yellow color and the surface resonance plasmon (SRP) band at around 400-450nm in UV-Visible spectroscopy initially reveals the formation of AgNPs. The particle size, crystalline nature, and size distribution was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) ring patterns, energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) techniques. The particles size ranged ca. 3nm to 30nm and are spherical in shape. The microbial activity of biogenic AgNPs was tested on clinical multiple drug resistance Staphylococcus aureus, Escherichia coli and Candida albicans reference strain. Zones of inhibition growth increases with [AgNPs]. The results suggest that the particle tested in this study certainly mediate the inhibition of bacterial and fungus growth. To overcome the serious problems related to environment like discharge of hazardous chemicals to water bodies, AgNPs have been found to be very important in the catalytic degradation of 4-nitrophenol. The rate of degradation strongly depends on the sun light exposure. Based on the chemical and kinetic studies, an attempt has been made to elucidate the mechanism of AgNPs formation.

摘要

已通过绿色路线,使用枣椰果果皮水提取物合成了银纳米颗粒(AgNPs)。紫外可见光谱中在400 - 450nm左右出现的黄色以及表面共振等离子体(SRP)带最初揭示了AgNPs的形成。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、选区电子衍射(SAED)环图案、能量色散X射线光谱(EDX)、动态光散射(DLS)技术确认了粒径、晶体性质和尺寸分布。颗粒尺寸范围约为3nm至30nm,且呈球形。对生物合成的AgNPs的微生物活性进行了测试,受试菌株为临床多重耐药金黄色葡萄球菌、大肠杆菌和白色念珠菌参考菌株。抑菌圈随着[AgNPs]增加。结果表明,本研究中测试的颗粒确实介导了细菌和真菌生长的抑制。为了克服与环境相关的严重问题,如向水体排放有害化学物质,已发现AgNPs在4 - 硝基苯酚的催化降解中非常重要。降解速率强烈依赖于阳光照射。基于化学和动力学研究,已尝试阐明AgNPs的形成机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验