Marletto C, Vedral V
Clarendon Laboratory, Department of Physics, University of Oxford, England.
Centre for Quantum Technologies, National University of Singapore, Block S15, 3 Science Drive 2, Singapore.
Phys Rev Lett. 2017 Dec 15;119(24):240402. doi: 10.1103/PhysRevLett.119.240402. Epub 2017 Dec 13.
All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine structure constant, which governs light-matter interactions. For example, detecting gravitons-the hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals-is deemed to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a field) mediating entanglement between two quantum systems must be quantum. This argument is general and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement generated between two masses via gravitational interaction. By our argument, the degree of entanglement between the masses is a witness of the field quantization. This experiment does not require any quantum control over gravity. It is also closer to realization than detecting gravitons or detecting quantum gravitational vacuum fluctuations.
所有现有的量子引力理论在实际中都极难验证。引力场中的量子效应极其微小,这与电磁场中的量子效应不同。根本原因在于引力耦合常数比精细结构常数小约43个数量级,而精细结构常数决定了光与物质的相互作用。例如,探测引力子——某些量子引力理论所预言的引力场的假设量子——实际上被认为是不可能的。在此,我们采用一种截然不同的、基于量子信息理论的方法来验证量子引力。我们提议通过用两个处于两个位置叠加态的质量体探测引力场,来见证引力场中的类量子特征。首先,我们证明任何介导两个量子系统之间纠缠的系统(例如一个场)必定是量子的。这一论证具有普遍性,不依赖于任何特定的动力学。然后,我们提出一个实验来探测通过引力相互作用在两个质量体之间产生的纠缠。根据我们的论证,质量体之间的纠缠程度是场量子化的一个见证。这个实验不需要对引力进行任何量子控制。它也比探测引力子或探测量子引力真空涨落更接近实现。