Rimbert Hélène, Darrier Benoît, Navarro Julien, Kitt Jonathan, Choulet Frédéric, Leveugle Magalie, Duarte Jorge, Rivière Nathalie, Eversole Kellye, Le Gouis Jacques, Davassi Alessandro, Balfourier François, Le Paslier Marie-Christine, Berard Aurélie, Brunel Dominique, Feuillet Catherine, Poncet Charles, Sourdille Pierre, Paux Etienne
GDEC, INRA, Université Clermont Auvergne, Clermont-Ferrand, France.
Biogemma, Chappes, France.
PLoS One. 2018 Jan 2;13(1):e0186329. doi: 10.1371/journal.pone.0186329. eCollection 2018.
Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research.
由于单核苷酸多态性(SNP)数量丰富且易于采用高通量基因分型技术,因此它是高效开展遗传学和基因组学研究的有力工具,这些研究包括遗传资源表征、全基因组关联研究和基因组选择。在小麦中,此前大多数SNP发现计划都针对编码部分,导致小麦基因组近98%的区域基本未被开发利用。在此,我们报告利用8个小麦品系的全基因组重测序数据,在小麦基因组的基因、重复和非重复基因间区域挖掘SNP。最终,我们鉴定出330万个SNP,其中49%位于B基因组,41%位于A基因组,10%位于D基因组。我们还描述了包含280,226个SNP的TaBW280K高通量基因分型芯片的开发情况。通过对代表全球多样性的96份小麦种质进行基因分型,检验了该芯片的性能。69%的SNP能够得到有效评分,其中一半呈现类似二倍体的聚类。事实证明,TaBW280K是开展多样性分析以及育种的高效工具,因为它能够区分亲缘关系相近的优良品种。最后,利用TaBW280K芯片对中国春和热南杂交衍生的群体进行基因分型,构建了一张包含83,721个标记的高密度遗传图谱。本文所述结果将为小麦研究群体提供用于基础研究和应用研究的有力工具。